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Abstract. We introduce tests for finite-sample linear regressions with het-

eroskedastic errors. The tests are exact, i.e., they have guaranteed type I error

probabilities when bounds are known on the range of the dependent variable,

without any assumptions about the noise structure. We provide upper bounds

on probability of type II errors, and apply the tests to empirical data.
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1. Introduction

The fundamental goal of hypothesis testing, as set by Neyman and Pearson

(1930), is the minimization of both type I and type II error probabilities. To cite

Neyman and Pearson (1930, p 100) : (1) we must be able to reduce the chance of

rejecting a true hypothesis to as low a value as desired; (2) the test must be so

devised that it will reject the hypothesis tested when it is likely to be false.

In the usual model of linear regressions, how well are these goals achieved? When

error terms are normally distributed and homoskedastic, the classical test1 has a

type I error probability equal to the nominal level of the test. But error terms in

real data almost never have a precisely normal distribution, let alone a homoskedas-

tic one. For any given heteroskedastic noise structure, White (1980)’s robust test
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acknowledges financial support from the Ministerio de Educación y Ciencia de España, Grant
MEC-SEJ2006-09993 and from the Barcelona Graduate School of Economics. We are grateful to
an anonymous referee for useful comments.
1In the remaining of the paper, “classical test” refers to the classical OLS t-test assuming normal
and homoskedastic errors.

1



2 OLIVIER GOSSNER AND KARL H. SCHLAG

guarantees a type I error probability that approaches the nominal level when the

sample size goes to infinity. But without restrictions on the (unknown) noise struc-

ture, and for any sample size, the probability of a type I error resulting from the

use of White (1980)’s test can be as large as 1. In fact, this is a consequence of a

general impossibility result due to Bahadur and Savage (1956) and Dufour (2003)

that shows that no meaningful test can be constructed in which the probability of

a type I error is guaranteed to be less than 1.

The use of statistical tools in situations where the underlying distributional

assumptions are not satisfied can have catastrophic consequences. Practitioners can

be lead to greatly underestimate the probability of certain outcomes, and remain

unprepared to those outcomes while thinking they are safe. This is what must have

happened to David Viniar, CFO of Goldman Sachs, who declared in August 2007

about the financial crisis: “We were seeing things that were 25-standard deviation

moves, several days in a row” (quoted in Larsen, 2007). Since the probability of a

25-standard deviation event under the normal distribution is less than 1 over 10137,

we can safely conclude that the distributional assumptions used by Viniar and his

colleagues were not satisfied.

In this paper our message is a positive one. We identify an important class

of statistical problems where the negative conclusions from Bahadur and Savage

(1956) and Dufour (2003) do not apply, and we introduce tests with guaranteed

upper bounds on type I and type II errors for this class of problems. The tests are

exact in the sense that they guarantee a type I error probability below the nominal

level independently of the error structure2. We also implement our these tests in

practical numerical examples.

The class of problems we consider is the class in which a bound on the dependent

variable is known. This condition is satisfied in a large range of applications. For

instance, it is warranted by the very nature of the endogenous variable (e.g., pro-

portions, success or failure, test scores) in 43 of the 75 papers using linear models

2This is the same sense as in e.g. .Yates (1934) and Dufour and Torres (2000).
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published in 2011 in the American Economic Review. It should be noted that even

under the boundedness condition, the existence of exact tests was previously an

open problem. Previous exact tests were derived by Schlag (2006, 2008a) for the

mean of a random variable and for the slope of a simple linear regression. Exact

tests for linear regressions under the alternative assumption that error terms have

median zero are developed by Dufour and Hallin (1993), Boldin et al. (1997), Cher-

nozhukov et al. (2009), Coudin and Dufour (2009), Dufour and Taamouti (2010).

We refer to our two tests as the nonstandardized and the Bernoulli tests. We

briefly summarize their constructions here. Each test relies on a linear combina-

tion of the dependent variables (such as in the OLS method) that is an unbiased

estimator of the coefficient to be tested.

The nonstandardized test relies on inequalities due to Cantelli (1910), Hoeffding

(1963), and Bhattacharyya (1987), as well as on the Berry-Esseen inequality (Berry,

1941; Esseen, 1942; Shevtsova, 2010), to bound the tail probabilities of the unbiased

estimator. One challenge in the construction is to apply the Berry-Esseen inequality

even though there is no lower bound on the variance of any of the error terms.

The Bernoulli test generalizes the methodology introduced by Schlag (2006,

2008b) for mean tests. Each term of the linear combination that constitutes the

unbiased estimator is probabilistically transformed into a Bernoulli random vari-

able. We then design a test for the mean of the family obtained using Hoeffding

(1956)’s bound on the sum of independent Bernoulli random variables. This defines

a randomized test, on which we then rely to construct a deterministic test.

We provide bounds on the probabilities of type II error of our tests. These

bounds can be used to select – depending on the sample size and the realization of

the exogenous variables – which of our tests is most appropriate. We also rely on

these bounds to show that these tests have enough power for practical applications.

In two canonical numerical examples involving one covariate in addition to the

constant, the bounds on the probability of type II errors show that the tests perform

well even for small sample sizes (e.g., n = 40).
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We implement our tests and compute confidence intervals using the empirical

data from Duflo et al. (2011).3 We compare the results relying on our test with the

95/ ones obtained using either the classical method and White’s heteroskedastic

robust method. The results show that, compared to the classical test or White’s

test, the losses of significance of our exact method are moderate, and the confidence

intervals are in most cases augmented by a factor of no more than 50 percent.

The paper is organized as follows. Section 2 introduces the model. Sections 3

and 4 present the nonstandardized test and the Bernoulli test. In Section 5, we

examine their efficiency using numerical examples. Section 7 shows an application

of the tests to empirical data. The underlying data-generating process is discussed

and extensions are discussed in Section 8. We conclude in Section 9. All proofs are

presented in the appendix.

2. Linear Regression

We consider the standard linear regressionmodel with random regressors, given by

(1) Yi = Xiβ + εi, i = 1, .., n

where Xi is the i-th row of a random matrix X ∈ R
n×m of independent variables,

β ∈ R
m is the vector of unknown coefficients, and ε ∈ R

n is the random vector of

errors. The fixed regressor case in which X is nonrandom and known ex-ante to

the statistician is a special case. We assume (i) strict exogeneity: E (ε|X) = 0 a.s.,

and (ii) almost surely no multicolinearity: X has rank m with probability 1. To

keep the exposition simple, in most of the paper we also assume (iii) conditional

independence of errors : (εi)i are independent conditional on X . Finally, we assume

(iv) bounded endogenous variable:4 there exist ω and ω′ with ω < ω′ such that

P (Yi ∈ [ω, ω′]) = 1 for i = 1, ..., n. In particular, (iv) implies that Xiβ ∈ [ω, ω′]

3The software used to implement the tests is freely downloadable from the authors’ webpages.
4Without any restriction on the support of Y , the possibility of very small or very large outcomes
that occur with very small probability (fat tails) make it impossible to make any inference about
EY based on the observed values of Y , as shown by Bahadur and Savage (1956) when testing for
means and by Dufour (2003) in linear regression analysis.
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almost surely, and ensures the existence of all moments of εi for i = 1, ..., n. We

assume that ω′ = ω+1; this is without loss of generality since we can reduce other

cases to this one by dividing each side of equation (1) by ω′ −ω. We relax (iii) and

(iv) in Section 8. The assumptions (i) to (iv) are stronger than those of e.g.White

(1980), but are sufficient to guarantee the existence of unbiased estimators (not

just asymptotically so) of β. We do not make any further assumptions about the

error terms, such as Var(εi) > 0 or homoskedasticity.

We present two exact tests at the level of significance α > 0 for the one-sided

hypothesis H0 : βj ≤ β̄j against H1 : βj > β̄j , where β̄j ∈ R.5 Exact means

that the probability of a type I error of the test is proven to be at most α for any

random vectors (X, ε) that satisfy (i)-(iv). In particular, bounds on the probabilities

of type I errors are guaranteed for every given sample size.

Both tests have a type I error probability bounded by the nominal level condi-

tional on the realization of X . This allows to combine both tests into another exact

test according to the following procedure: given X , select the test for which our

bounds guarantee a type II error probability below 0.5 for the largest range of the

parameter to be tested. This is the procedure that we implement in our software

and in the numerical applications.

3. The Nonstandardized Test

Assumption (ii) ensures the existence of τ j ∈ R
n such that X ′τ j = ej , where

ejj = 1 and ejk = 0 for k 6= j. For such τ j , β̂j = τ ′jY is an unbiased estimate of βj .

One example of τ j is the system of coefficients for which τ ′jY is the OLS estimate

of βj . We present a test for a given such vector τ j , and later discuss the choice of

τ j . We let ‖ ‖∞ denote the supremum norm, and ‖ ‖ denote the Euclidian norm,

while Φ denotes the cumulative normal distribution.

Consider the functions defined for σ > 0, t > 0, and τ j ∈ R
n:

5Tests of H0 : βj ≥ β̄j , H0 : βj = β̄j , and confidence intervals are derived easily, see Section 8.
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and

ϕ(σ, t, τ j) = min {ϕC(σ, t), ϕBh(σ, t, τ j), ϕH(t, τ j), ϕBE(σ, t)} .

The tests use the following bound (see Lemma 3 in the appendix) on the variance

of β̂j as a function of βj :

(2) σ̄2
βj

= max
z∈Rm

{

∑

i

τ2ji(Xiz − ω) (ω + 1−Xiz) : zj = βj , Xz ∈ [ω, ω + 1]n
}

,

and the following bound on the variance of β̂j under the null hypothesis:

σ̄0,βj
= max

βj≤β̄j

σ̄βj
.

It can be easily verified that ϕ is continuously decreasing in t and that limt→∞ ϕ(σ̄0,βj
, t, τ j) =

0. Hence, for 0 < α < 1, there exists a minimal value t̄N such that ϕ(σ̄0,βj
, t̄N , τ j) ≤

α. We define the nonstandardized test as the one that rejects the null hypothesis

when β̂j − β̄j ≥ t̄N . The choice of t̄N maximizes the analytical bound on the power

of the test (it has the largest rejection area) while ensuring that the probability of

a type I error is bounded by α.

Theorem 1. The nonstandardized test has a type I error probability bounded above

by α. For each realization of X, the type II error probability is bounded above by

ϕ
(

σ̄βj
, βj − β̄j − t̄N , τ j

)

for every βj ≥ β̄j − t̄N .
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To prove Theorem 1, we rely on probabilistic bounds on the deviation of β̂j

from its mean βj . Bounds on the probability that β̂j ≥ β̄j + t under the null

hypothesis for t > 0 provide bounds on the type I error probability, while bounds

on the probability that β̂j − β̄j < t give bounds on the type II error probability.

More precisely, we use inequalities due to Cantelli (1910), Bhattacharyya (1987),

and Hoeffding (1963) to prove that under the null hypothesis, P (β̂j≥β̄j + t̄N ) is

bounded above by ϕC(σ̄0,βj
, t̄N), ϕBh(σ̄0,βj

, t̄N , τ j), and ϕH(t̄N , τ j). We also use

Berry-Esseen’s inequality (Berry, 1941; Esseen, 1942) with the constant obtained by

Shevtsova (2010) to bound this probability by ϕBE(σ̄0,βj
, t̄N ). We finally obtain the

bounds on the probabilities of type I and type II errors of Theorem 1 by combining

these inequalities. Our test statistic as well as the rejection threshold depend on

X . Since all probability bounds we use hold conditional on X , the type I error

probability is bounded above by α conditional (and therefore also unconditional)

on X .

The test is called “nonstandardized” since it relies on maximal bounds on the

deviation of β̂j from its mean and does not try to estimate this bound from the

data (as the classical test and White’s test do).

In the definition of the nonstandardized test, τ j is any vector with the property

that X ′τ j = ej . The bound on type II error probabilities specified in Theorem 1

can be used to select the vector of weights τ j that guarantees the largest range

of parameters for which the type II error probability falls below a selected level.

In practice, the system of weights τ j corresponding to the OLS estimator allows

for a good performance of the test, as illustrated in Sections 5 and 7. It has the

additional advantage that results are easily comparable to other tests based on the

OLS estimate.

4. The Bernoulli Test

Like the nonstandardized test, the Bernoulli test is built on a vector τ j ∈ R
n

satisfying X ′τ j = ej , so that β̂j = τ ′jY is an unbiased estimate of βj . The test also
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depends on a parameter θ > 0 and on vector d ∈ R
n such that for every i, both

τ jiω+ di and τ ji(ω+1)+ di are in [0, ‖τ i‖∞].6 We present the test for significance

level α first, and then discuss the choice of τ , θ, and d.

As in Schlag (2006, 2008b), we reduce the problem of testing βj against β̄j

to testing the mean of a sequence of Bernoulli random variables. More precisely,

consider a family (Wi)i of independent Bernoulli random variables such that the

probability of success of Wi is (τ jiYi + di)/‖τ j‖∞. The proportion of successes

W̄ =
∑

iWi/n has expected value pβj
=

βj+
∑

i
di

n‖τj‖∞

, and p̄ = pβ̄j
is the maximum of

pβj
under the null hypothesis.

Since we allow the choice of τ , d, and θ to depend on the realization X , the

distribution of W depends on X as well as on Y , but is fully known given their

realizations. Given realizations of X and Y , and for n ≥ k ≥ 0, we let FXY (k)

denote the probability that nW̄ ≥ k̄.

The Bernoulli test compares the tail distribution of W̄ given by FXY with the tail

of the binomial distribution of parameters (n, p̄). For 0 < p < 1 and k ∈ {0, ..., n},

it is useful to introduce the notation:

B(k, p) =

n
∑

i=k

(

n

i

)

pi(1− p)n−i.

Let k̄ be the smallest integer such that k̄ > np̄ + 1 and B(k̄, p̄) ≤ θα, and let

λ = θα−B(k̄,p̄)

B(k̄−1,p̄)−B(k̄,p̄)
.

The Bernoulli test rejects the null hypothesis if the following inequality is satis-

fied:

λFXY (k̄ − 1) + (1− λ)FXY (k̄) ≥ θ.

Theorem 2. The Bernoulli test has a type I error probability bounded above by α.

For each realization of X, the type II error probability is bounded above by

1− λB(k̄ − 1, pβj
)− (1 − λ)B(k̄, pβj

)

1− θ
.

when pβj
> k̄/n.

6Note that di = ‖τ j‖∞ −max{τ jiω, τ ji(ω + 1)} satisfies these constraints.
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In a first step to prove Theorem 2, we build a randomized test that, based on a

realization of (Wi), rejects the null hypothesis for large enough values of W̄ . Recall

that under the null hypothesis, the expected value of W̄ is at most p̄. A theorem by

Hoeffding (1956) shows that, for a given value of its expectation, the tail probability

of W̄ is maximal when (Wi)i is an i.i.d. family of random variables. That theorem

yields a bound on the probability of a type I error for the randomized test as a

function of the binomial distribution with parameter p̄. We also obtain bounds on

the probability of a type II error for the randomized test.

In a second step, we construct a deterministic test from the randomized test, as

in Schlag (2006). This deterministic test rejects the null hypothesis at significance

level α whenever the probability that the randomized test rejects the null hypothesis

at a significance level θα exceeds θ. We then bound the probability of type I and

type II errors of the deterministic test.

The Bernoulli test, as the nonstandardized test, depends on the realization of

X . The type I error probability is bounded by α for each realization of X , thus

also unconditional on X .

As in the case of the nonstandardized test, the bound on type II error prob-

abilities specified in Theorem 2 can be used to select the parameters τ j , d, and

θ that guarantee a type II error probability below a certain level for the largest

range of parameters. In practical applications, good performance is obtained when

τ minimizes ‖τ j‖∞, d is given by di = ‖τ i‖∞ − max{τ jiω, τ ji(ω + 1)}, and θ is

computed numerically to minimize the value of βj for which our bounds guarantee

a type II error probability below 0.5. We follow this approach in Sections 5 and 7.

5. Numerical application of our method

We investigate the performance of our tests in two numerical examples. Both

examples involve a constant and a second covariate. We test for H0 : β2 ≤ 0 against

H1 : β2 > 0. For a given sample, and fixing a significance level α, we look for the

test that attains the smallest value of β2 such that the probability of a type II
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error for this test is guaranteed to fall below 0.5. We choose the free parameters

within each test according to the procedure explained at the end of Sections 3 and

4. In both tests, for computational simplicity, we consider τ either to be the OLS

estimator or the unbiased estimator that minimizes ‖τ j‖∞.

In the first example, which we call the step example, the second covariate X2

takes only the values 0 and 1. The number of times that X2 takes the value 1

is denoted by h. The sample is balanced for h = n/2, and gets more and more

unbalanced as h gets closer to 1. In the second example, which we call the uniform

example, Xi2 is uniformly distributed on [−1, 1]: Xi2 = −1+(2i− 1)/n for every i.

In both examples we assume Yi ∈ [0, 1] for every i, which constrains the values of

β2 to belong to [0, 1] in the step example and to [−1/2, 1/2] in the step example.

Table 1 presents results in the step example, and Table 2 presents results in the

uniform example. We consider different values of the sample size n, and vary h/n in

the step example. The column α shows the nominal significance level. The column

β′′
2 reports the minimal value of β2 for which the bound on the probability of a

type II error specified by either Theorem 1 or 2 is equal to 0.5. We select the test,

reported in the third column, for which this bound is achieved.7. We report B for

the Bernoulli test, and, if the nonstandardized is selected, we report which one of

the four bounds is binding when determining the threshold t̄N used for rejecting

the null hypothesis, followed by which one is binding when deriving the type II

error bound at β2, C for Cantelli, Bh for Bhattacharyya, H for Hoeffding, and

BE for Berry-Esseen. In Table 2 we also report in the parentheses whether best

performance is achieved by setting τ equal to the OLS estimator, indicted by ols,

or equal to the unbiased estimator that minimizes ‖τ j‖∞, indicated by mm. Such

entries are not reported in Table 1, as in the step example, the OLS estimator also

minimizes ‖τ j‖∞. Column “other type II” shows the type II error probability of

the test that was not selected when β2 ≥ β′′
2 , as derived from our theorems, with

7Note that it is valid to make a selection between the two tests based on the observation of X
since our bounds on the type I and type II error probabilities are conditional on this realization.
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the symbols in parentheses indicating the binding bounds and the choice of τ j when

applicable. Given the method for selecting the test, all these values are at least 0.5.

In column “true type I” we report true type I error probabilities under the

additional restriction that Y ∈ {0, 1} (in which case the error structure is fully

specified by the values of X and β), rounding up below 0.01.8 Finally, under “true

type II” we report the type II error probabilities of our selected test using Monte-

Carlo simulations under the additional assumption Y ∈ {0, 1}.

For instance, in the step example, the first line of Table 1 shows that with n = 40

and h/n = .5, the Bernoulli test is selected for testingH0 : β2 ≤ 0 at (nominal) level

0.05. For β2 ≥ 0.2 this test guarantees (by Theorem 4) a type II error probability

below 0.5. For the same parameters, the nonstandardized test guarantees a type II

error probability only below 0.94; it does so by using ϕH to derive the threshold t̄N ,

and by using ϕBE to derive the bound on the probability of a type II error. Under

the additional restriction that Y ∈ {0, 1} the true size of our test is 0.01 and the

true type II error probability is 0.3.

n h/n α β′′

2
test* other type II true type I true type II

40 0.50 0.05 0.40 B 0.94 (H,BE) 0.01 0.30
40 0.25 0.05 0.60 H,C 0.54 (B) 0.01 0.16
100 0.50 0.05 0.25 B 0.84 (H,BE) 0.01 0.32
100 0.25 0.05 0.39 H,C 0.59 (B) 0.01 0.15
500 0.1 0.05 0.26 H,C 0.80 (B) 0.01 0.14
5000 0.50 0.05 0.03 B 0.59 (BE,BE) 0.01 ??

Table 1. Step example with H0 : β2 ≤ 0 and H1 : β2 ≥ β′′
2 . “true

type I” and “true type II” errors are obtained by Monte-Carlo
simulations under the additional assumption that Y ∈ {0, 1}.

n α β′′

2
test* other type II true type I true type II

60 0.05 0.32 B,mm 0.78 (H,C,ols) 0.01 0.37
500 0.05 0.11 B,mm 0.63 (H,BE,ols) 0.01 0.35
6000 0.05 0.033 H,BE,ols 0.51 (B,mm) 0.01 0.30

Table 2. Uniform example with H0 : β2 ≤ 0 and H1 : β2 ≥ β′′
2 .

“true type I” and “true type II” errors are obtained by Monte-
Carlo simulations under the additional assumption that Y ∈ {0, 1}.

8Without with this additional assumption, computing the type I and type II error probabilities
would require an optimization procedure over the infinitely dimensional error structure.
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The results show that our theoretical bounds allow us to reject the null hypothesis

in a substantial range of values of β2, even for small samples (n = 40, 60).

The Bernoulli test performs better than the nonstandardized test when the

covariates are symmetrically distributed around zero (in the step example when

h/n = 0.5 or in the uniform example) and the sample size is small or moderate.

Each of the four probability bounds used in the construction of the nonstandardized

test is binding for some range of parameters. This shows that dispensing with one

of the tests or of one of the four bounds in the nonstandardized test would weaken

our test.

The type I error probabilities obtained by Monte-Carlo simulations fall signifi-

cantly below the nominal level, and are typically less than 1% instead of 5%. Our

results only ensure that these probabilities are below the nominal level. The type

II error probabilities obtained by Monte-Carlo simulations are also below the upper

bounds of 0.5 that is guaranteed by our results, and range between 0.13 and 0.37 in

the tables. This suggests that our methods are more powerful than our theoretical

bounds indicates.

6. Comparison of size and power of different methods

In this section, in a practical example, we compare the type I error probabilities

obtained by Monte-Carlo simulations between our method, the classical test, and

White’s test.

We use the same data structure as in the step example of section 5. We let

h/n = 0.15, fix Y ∈ {0, 1} and test for H0 : β2 ≤ 0.5. Because of the simplicity

of the example, we believe that it is relevant to understand phenomena arising in

common applications. The results are described in Table 3.

The left part of the table describes X (by n and h/n), the nominal level of

significance α at which all tests are evaluated, the value β
′′

2 at which our method

guarantees a type II error probability of 0.5 as well as the corresponding method
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true type I error

n h/n α β′′

2
test* exact classical robust

100 0.15 0.05 0.86 B 0.01 0.33 0.31
300 0.15 0.05 0.73 B 0.01 0.28 0.26
1000 0.15 0.05 0.63 B 0.01 0.24 0.23

Table 3. Step example with Y ∈ {0, 1} and H0 : β2 ≤ 0.5. All
values 0.01 under “exact” represent empirical probabilities of less
than 1%.

selected. The corresponding rejection probabilities obtained by Monte-Carlo simu-

lations are reported in the right part of the table: “exact” for our test, “classical”

for the classical test and “robust” for White’s robust test.

The results show that both the classical and White’s robust test are severely

oversized even for sample size as large as 1000, with type I error probabilities of

24% and 23%, to be compared with the nominal level of 5%. On the other hand,

our method has a type I error probability of only less than 1%, and is therefore

undersized. These findings do not depend on the fact that all variables are binary

valued, a continuity argument shows that similar type I error probabilities can arise

when both Xi2 and Yi have full support on [0, 1].

For more general error structures where Y ∈ [0, 1], the type I errors probabilities

reported in Table 3 are lower lower bounds on the true values. This allows to

conclude that both the classical test and White’s robust test are severely oversized

in this case as well. On the the other hand, our methods continue to guarantee a

type I error probability below the nominal level in this setup as well.

7. Empirical application

In this section we apply our methods to regressions from Duflo et al. (2011).

We test the significance of parameters and provide 95% confidence intervals. When

testing for significance, we rely on the exact test that guarantees a type II error

probability below 0.5 for the largest range of parameters. Confidence intervals

are derived by considering the set of parameters where we cannot reject the null

hypothesis with the equi-tailed two-sided test with level 0.05.
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In each of the regressions, the dependent variable is a Bernoulli random variable

specifying whether or not a farmer has used fertilizers in a given season: season 1 for

regressions 1-2, season 2 for regressions 3-4, and season 3 for regressions 5-6. The

independent variable “safi season 1” indicates whether the farmer was offered or not

a certain SAFI program in season 1; “starter kit” and “demo” indicate respectively

whether the farmer received a starter kit or participated in a demonstration plot;

“kit and demo” is an interaction variable between these last two variables; and

“household” indicates whether the household used fertilizer previous to the treat-

ment. Additional dummy variables control for the sixteen possible schools attended.

Regressions 2, 4, and 6 include a number of controls (not reported here), including

the farmer’s gender, whether the farmer’s home has mud walls, the number of years

of education, and the farmer’s income in the past month.

The number of observations ranges from 626 to 902, the number of variables is

21 for regressions without extra control variables and 28 for those with them.

In all the tests of H0 : βj = 0, the nonstandardized test is selected. The same

test is also selected for all confidence intervals, except for the household covariate

in regressions 2 and 6 where the Bernoulli test is used.

Our results confirm the main findings of Duflo et al. (2011), which is that the

SAFI program had a significant effect on fertilizer adoption in the same season. We

also confirm the absence of a significant effect of SAFI on fertilizer adoption in future

seasons (regressions 3-6). Significant parameters using the classical test remain

significant with our exact methods, albeit slightly less so: two variables found to

be significant at the 1% significance level with the classical test are significant only

at the 5% level with our exact test, while other variables have the same range of

significance with the classical test and with our method. The classical OLS t-test

is not appropriate as errors are by assumption not homoskedastic. Not suprisingly,

homoskedasticity is rejected at the 1% level. White’s method leads to stronger

significance than the classical method or ours. Using White’s method, the demo

variable is found to be highly significant in regressions 2-6; while in contrast neither
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test of H0 : βj = 0 95% confidence intervals

variable model exact classical robust exact classical robust

safi season 1 1 ** *** *** [0.00, 0.23] [0.04, 0.19] [0.04, 0.19]
starter kit 1 not not not [−0.08, 0.20] [−0.03, 0.15] [−0.02, 0.14]
kit and demo 1 not not not [−0.22, 0.17] [−0.15, 0.10] [−0.14, 0.10]
demo 1 not not not [−0.99, 1.00] [−0.61, 0.63] [−0.46, 0.48]
household 1 *** *** *** [0.27, 0.47] [0.30, 0.43] [0.30, 0.44]

safi season 1 2 ** *** *** [0.02, 0.27] [0.06, 0.22] [0.06, 0.22]
starter kit 2 * * * [−0.07, 0.23] [−0.01, 0.17] [−0.01, 0.17]
kit and demo 2 not not not [−0.28, 0.16] [−0.20, 0.07] [−0.20, 0.07]
demo 2 not not *** [−0.96, 1.84] [−0.42, 1.30] [0.24, 0.64]
household 2 *** *** *** [0.19, 0.47] [0.24, 0.39] [0.24, 0.39]

safi season 1 3 not not not [−0.12, 0.13] [−0.08, 0.09] [−0.08, 0.09]
starter kit 3 not not not [−0.12, 0.17] [−0.07, 0.12] [−0.07, 0.12]
kit and demo 3 not not not [−0.19, 0.23] [−0.11, 0.16] [−0.11, 0.16]
demo 3 not not *** [−1.03, 1.75] [−0.55, 1.27] [0.18, 0.55]
household 3 *** *** *** [0.21, 0.43] [0.25, 0.39] [0.24, 0.40]

safi season 1 4 not not not [−0.13, 0.15] [−0.08, 0.10] [−0.08, 0.10]
starter kit 4 not not not [−0.15, 0.16] [−0.10, 0.11] [−0.10, 0.10]
kit and demo 4 not not not [−0.24, 0.23] [−0.16, 0.15] [−0.16, 0.15]
demo 4 not not *** [−0.94, 1.87] [−0.45, 1.38] [0.23, 0.69]
household 4 *** *** *** [0.16, 0.41] [0.20, 0.37] [0.19, 0.37]

safi season 1 5 not not not [−0.11, 0.12] [−0.07, 0.08] [−0.07, 0.08]
starter kit 5 not not not [−0.14, 0.12] [−0.10, 0.08] [−0.10, 0.08]
kit and demo 5 not not not [−0.19, 0.20] [−0.13, 0.13] [−0.13, 0.13]

demo 5 not not *** [−0.63, 1.36] [−0.30, 1.02] [0.10, 0.62]
household 5 *** *** *** [0.18, 0.38] [0.21, 0.35] [0.21, 0.35]

safi season 1 6 not not not [−0.12, 0.14] [−0.07, 0.09] [−0.07, 0.09]
starter kit 6 not not not [−0.18, 0.12] [−0.13, 0.07] [−0.12, 0.07]
kit and demo 6 not not not [−0.25, 0.18] [−0.17, 0.11] [−0.17, 0.11]
demo 6 not not *** [−0.96, 1.84] [−0.48, 1.35] [0.22, 0.65]
household 6 *** *** *** [0.13, 0.38] [0.17, 0.33] [0.17, 0.33]

Table 4. Comparison of tests and confidence intervals: exact for our
method, classical for the classical test, robust for White’s robust method.
Model indicates the regression number. Significance levels: *** for 1%, **
for 5%, * for 10%, and not for no significance at 10%.

our method nor the classical method finds this variable to be significant. However,

a Monte-Carlo simulation conducted separately shows that White’s test applied to

this variable reports significance at the 1% level with probability as high as 62%

under the null hypothesis.9 This casts a severe doubt on the appropriateness of the

use of White’s method on this dataset.

The median increase in the size of confidence intervals using our exact method

is about 50 percent compared to the classical or White’s method. This seems a

moderate price to pay for exactness.

9The procedure looks for the vector β of parameters compatible with H0 that maximizes the
probability of rejection. For every β, the noise structure is entirely specified by the fact that the
dependent variable takes only the values 0 or 1.
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8. Relaxing assumptions and further tests

8.1. Relaxing Assumptions on Errors. We now discuss some relaxations of

assumptions (iii) and (iv) in Section 2.

Assumption (iii) states that errors are independent conditionally on X . For

the bound based on Cantelli (1910)’s inequality, the weaker condition of pairwise

orthogonality E (εiεj |X) = 0 for i 6= j is sufficient. The inequality of Bhat-

tacharyya (1987) relies on fourth moments of β̂j ; in order to use it, we need only

to require that E (εiεjεkεl|X) = 0 if i /∈ {j, k, l}. Hoeffding’s inequality holds

for Markov chains (Hoeffding, 1963, p. 18); we can use it if we assume only that

E (εj+1|ε1, . . . , εj , X) = 0 for j = 1, ..., n−1. We cannot, however, relax conditional

independence when using the Berry-Esseen inequality or in the derivation of the

error bounds for the Bernoulli test. Indeed, both the Berry-Esseen inequality and

of the result of Hoeffding (1956) explicitly require independent random variables.

The assumption (iv) that the dependent variables are bounded (i.e., Pr(Yi ∈

[ω, ω′]) = 1) can be relaxed in several ways. The methods presented can be adapted

to the case in which the bounds depend both on X and on i, i.e., for every X , there

exists (ω1i)i and (ω2i)i such that Pr(εi ∈ [ω1i, ω2i] |X = x) = 1 holds for every i.

Alternatively, one can assume a bound on the variance of the noise terms. One

can easily adapt the nonstandardized test to this case using the inequalities from

Cantelli (1910), Hoeffding (1963), and Bhattacharyya (1987).

8.2. Further tests. The tests we have introduced are one-tailed. It is straightfor-

ward to construct from them a exact two-tailed tests from the one-tailed tests: the

two-tailed test rejects H0 : βj = β0 at level α if either of the two one-tailed tests

H0 : βj ≥ β0 or H0 : βj ≤ β0 is rejected at level α/2.

To construct a 100 · (1− α)% confidence interval, we consider of all those values

of β̄j such that the null hypothesis H0 : βj = β̄j cannot be rejected at level α.

Finally, it is desirable in several applications to test for multiple linear restric-

tions. Although simple tests exact for multiple restrictions can be easily derived

from our one and two-tailed tests, such procedures can lack power. We leave the
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question of constructing appropriate and powerful enough exact test for multiple

restrictions to further research.

9. Conclusion

This paper introduces finite-sample methods that are exact in the sense that they

do not rely on assumptions about the noise terms beyond independence. These tests

perform well even in small sample sizes (n = 40, 60). They are powerful enough

to allow practical conclusions to be drawn when they are applied to independently

collected empirical data.

The nonstandardized test relies on a selection of probabilistic bounds. Improve-

ments of these bounds would lead to an improved test. We note, however, that

when we conducted a thorough, albeit nonexhaustive, examination of bounds de-

rived from a series of known inequalities such as those from Benktus (2004), Bercu

and Touati (2008), Bernstein (1946), Pinelis (2007), and Xia (2008), these bounds

did not result in any improvement of our method.
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Appendix A. Proof of Theorem 1

The proof of Theorem 1 is obtained by combining a bound on the variance of

β̂j (Lemma 3) with bounds on the deviation of β̂j from its mean provided by

Propositions 4, 5, 7 and 8.

A.1. Bound on the variance of β̂j. We let σ2
βj

= Var(β̂j) represent the variance

of β̂j .

Lemma 3.

σ2
βj

≤ σ̄2
βj

Proof. For a given mean of Yi, Var(Yi) is maximized when Yi is a Bernoulli random

variable taking the values ω and ω + 1:

Var(Yi) ≤ E(Yi − ω)E(ω + 1− Yi) = (Xiβ − ω) (ω + 1−Xiβ) .

Since σ2
βj

=
∑

τ2jiVar(Yi),

σ2
βj

≤
∑

i

τ2ji(Xiβ − ω) (ω + 1−Xiβ)

≤ max
z∈Rm

{

∑

i

τ2ji(Xiz − ω) (ω + 1−Xiz) : zj = βj , Xz ∈ [ω, ω + 1]n
}

= σ̄2
βj
.

A.2. Cantelli. Cantelli (1910)’s inequality states that for a random variable Z of

variance σ2 and k > 0:

P (Z −EZ ≥ kσ) ≤ 1

1 + k2
.

We rely on Cantelli’s inequality to bound P
(

β̂j − β̄j ≥ t̄
)

using ϕC .

Proposition 4. (1) For t̄ > 0 and βj ≤ β̄j,

P
(

β̂j − β̄j ≥ t̄
)

≤ ϕC(σβj
, t̄).



EXACT LINEAR TESTS 21

(2) For t̄ > 0 such that βj > β̄j + t̄,

P
(

β̂j − β̄j < t̄
)

≤ ϕC(σβj
, βj − β̄j − t̄).

(3) For σ, t > 0, ϕC is increasing in σ, decreasing in t.

Proof. For t̄ > 0 and βj ≤ β̄j , by applying Cantelli’s inequality to β̂ we obtain

P
(

β̂j − β̄j ≥ t̄
)

≤ P
(

β̂j − βj ≥ t̄
)

≤
σ2
βj

σ2
βj

+ t̄2
= ϕC(σβj

, t̄),

which is point 1. For t̄ such that βj > β̄j + t̄ we have

P
(

β̂j − β̄j < t̄
)

= P
(

−β̂j + βj ≥ βj −
(

β̄j + t̄
)

)

≤
σ2
βj

σ2
βj

+ (βj − β̄j − t̄)2

= ϕC(σβj
, βj − β̄j − t̄)

which is point 2. Point 3 is immediate.

A.3. Bhattacharyya. Consider a random variable Z with EZ = 0, let σ2 =

Var(Z), γ1 = EZ3

σ3 , and γ2 = EZ4

σ4 . Bhattacharyya (1987)’s inequality states that if

k2 − kγ1 − 1 > 0 then

P (Z ≥ kσ) ≤ γ2 − γ2
1 − 1

(γ2 − γ2
1 − 1) (1 + k2) + (k2 − kγ1 − 1)

2 .

Relying on this inequality we derive:

Proposition 5. (1) For t̄ > 0 and βj ≤ β̄j,

P
(

β̂j − β̄j ≥ t̄
)

≤ ϕBh(σβj
, t̄, τ j).

(2) For t̄ > 0 such that βj > β̄j + t̄,

P
(

β̂j − β̄j < t̄
)

≤ ϕBh(σβj
, βj − β̄j − t̄, τ j).

(3) ϕBh is increasing in σ and decreasing in t.
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Before applying Bhattacharyya’s inequality to Z = β̂j − βj we bound the corre-

sponding values of γ1 =
E(β̂j−βj)

3

σ3

βj

and γ2 =
E(β̂j−βj)

4

σ4

βj

.

Lemma 6.

(3)
E
(

β̂j − βj

)3

σ3
βj

≤ ‖τ j‖∞
σβj

and

(4)
E
(

β̂j − βj

)4

σ4
βj

≤ 4.

Proof. Using the polynomial expansion, and E (εi) = 0 for every i, we obtain

E
(

β̂j − βj

)3

= E

(

∑

i

τ ji (Yi −Xiβ)

)3

=
∑

i

τ3jiE
(

ε3i
)

.

Since |εi| ≤ 1, we have

γ1 =
E
(

β̂j − βj

)3

σ3
βj

=

∑

i τ
3
jiE

(

ε3i
)

σ3
βj

≤
‖τ j‖∞

∑

i τ
2
jiE

(

ε2i
)

σ3
βj

=
‖τ j‖∞
σβj

.

Using the polynomial expansion again, we get

E
(

β̂j − βj

)4

=
∑

i

τ4jiE
(

ε4i
)

+ 3
∑

i6=k

τ2jiE
(

ε2i
)

τ2jkE
(

ε2k
)

and
(

∑

i

τ2jiE
(

ε2i
)

)2

=
∑

i

τ4jiE
(

ε2i
)2

+
∑

i6=k

τ2jiE
(

ε2i
)

τ2jkE
(

ε2k
)

.

From this we derive

E
(

β̂j − βj

)4

= 3

(

∑

i

τ2jiE
(

ε2i
)

)2

+
∑

i

τ4jiE
(

ε4i
)

− 3
∑

i

τ4jiE
(

ε2i
)2

.
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Using the Cauchy-Schwarz inequality twice we obtain

∑

i

τ4jiE
(

ε4i
)

=

∫

∑

i

τ4jiε
4
i dP ≤

∫

(

∑

i

τ2jiε
2
i

)2

dP

≤
(

∫

(

∑

i

τ2jiε
2
i

)

dP

)2

=

(

∑

i

τ2jiEε2i

)2

and hence

γ2 =
E
(

β̂j − βj

)4

σ4
βj

≤ 4 .

Proof of Proposition 5. For the proof of point 1, we need only to consider the case

where t̄2

σ2

βj

− t̄‖τj‖
∞

σ2

βj

− 1 > 0, in which we can apply Bhattacharyya’s inequality to

β̂j − βj and use (4):

P
(

β̂j − β̄j ≥ t̄
)

≤ P
(

β̂j − βj ≥ t̄
)

≤ γ2 − γ2
1 − 1

(γ2 − γ2
1 − 1)

(

1 +
(

t̄
σβj

)2
)

+

(

(

t̄
σβj

)2

−
(

t̄
σβj

)

γ1 − 1

)2

≤ 3− γ2
1

(3− γ2
1)

(

1 + t̄2

σ2

βj

)

+

(

t̄2

σ2

βj

− t̄
σβj

γ1 − 1

)2 .(5)

We then obtain point 1 by maximizing (5), which is concave in γ1 over all

γ1 ≤ ‖τj‖
∞

σβj

, holding σβj
and ‖τ j‖∞ fixed using (3). The proof of point 2 is

similar, and point 3 comes from the fact that both functionals defining ϕBh when

t2

σ2 − t‖τj‖
∞

σ2 − 1 > 0 are increasing in σ and decreasing in t.

A.4. Hoeffding. We recall an inequality due to Hoeffding (1963, Theorem 2). Let

(Zi)
n
i=1 be independent random variables with Zi ∈ [ai, bi], and Z̄ = 1

n

∑n
i=1 Zi.

For t̄ > 0,

P
(

Z̄ −EZ̄ ≥ t̄
)

≤ exp

(

− 2n2t̄2
∑n

i=1 (bi − ai)
2

)

.

Relying on Hoeffding’s inequality we show:
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Proposition 7. (1) For t̄ > 0 and βj ≤ β̄j,

P
(

β̂j − β̄j ≥ t̄
)

≤ ϕH(t̄, τ j).

(2) For t̄ > 0 such that βj > β̄j + t̄,

P
(

β̂j − β̄j < t̄
)

≤ ϕH(βj − β̄j − t̄, τ j).

(3) For t > 0, ϕH is decreasing in t.

Proof. We apply Hoeffding’s inequality to (Zi)i where Zi = nτ jiYi. So Zi ∈

[nτ jiω, nτ ji(ω + 1)] for τ ji ≥ 0 and Zi ∈ [nτ ji(ω + 1), ω] for τ ji < 0. For βj ≤ β̄j :

P (β̂j − β̄j ≥ t̄) ≤ P (τ ′jY − βj ≥ t̄) ≤ exp

(

− 2n2t̄2
∑

i(nτ ji)
2

)

= exp

(

− 2t̄2

‖τ j‖2

)

which is point 1. The proof of point 2 is similar, and point 3 is immediate.

A.5. Berry-Esseen. We recall the Berry-Esseen inequality (Berry, 1941; Esseen,

1942) with the constant as derived by Shevtsova (2010). Let (Zi)1≤i≤N be a family

of independent random variables with Var(Zi) = σ2
i . For ū ∈ R,

(6)

∣

∣

∣

∣

∣

∣

P





∑N
i=1 (Zi −EZi)
√

∑N
i=1 σ

2
i

≤ ū



− Φ (ū)

∣

∣

∣

∣

∣

∣

≤ A
(

∑N
i=1 σ

2
i

)3/2

N
∑

i=1

E |Zi −EZi|3

where A = 0.56. Using the Berry-Esseen inequality, we show the following propo-

sition:

Proposition 8. (1) For t̄ > 0 and βj ≤ β̄j,

P
(

β̂j − β̄j ≥ t̄
)

≤ ϕBE(σβj
, t̄).

(2) For t̄ such that βj > β̄j + t̄,

P
(

β̂j − β̄j < t̄
)

≤ ϕBE(σβj
, βj − β̄j − t̄).

(3) For σ, t > 0, ϕBE is increasing in σ, decreasing in t.
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The idea of the proof of Proposition 8 is to apply Berry-Esseen’s inequality to

the random variables Zi = τ jiYi. However, a difficulty arises from the fact that

the right hand side of Berry-Esseen’s inequality is unbounded as a there is no lower

bound on
∑n

i=1 σ
2
i = σ2

βj
. Our solution to this is to add additional random variables

with known distribution to the family (Zi)1≤i≤N to guarantee such a lower bound.

We eliminate this noise in a later step.

Lemma 9. Let w > 0, ū ∈ R. With Z ∼ N
(

0, w2
)

independent of (Yi)i, and

R (w) =

∑

i |τ ji|
3
E |Yi −EYi|3

(

σ2
βj

+ w2
)3/2

,

we have

P





β̂j − βj + Z
√

σ2
βj

+ w2
≥ ū



 ≤ 1− Φ (ū) +AR (w) .

Proof. We apply Berry-Esseen’s inequality to the family of independent random

variables Z1, ..., Zn+N where Zi = τ jiYi for i ≤ n and Zi ∼ N
(

0, w
2

N

)

for n+ 1 ≤

i ≤ n+N . We note that Z has the same distribution as
∑n+N

t=1 Zi. Let δ ∼ N (0, 1).

The Berry-Esseen inequality applied to
∑n+N

t=1 Zi shows:

P





β̂j − βj + Z
√

σ2
βj

+ w2
≥ ū



 = 1− P





∑n+N
i=1 (Zi −EZi)
√

∑n+N
i=1 σ2

Zi

≤ ū





≤ 1− Φ(ū) +A

∑n
i=1 |τ ji|

3
E |Yi −EZi|3 +N

(

w√
N

)3

E |δ|3
(

σ2
βj

+ w2
)3/2

.

As N → ∞ the right term decreases and converges to 1− Φ(ū) + AR(w), and the

claim follows.

Next we use Lemma 9 to obtain a bound on the upper tail of β̂j − βj .

Lemma 10. For every b1 ∈ R and w > 0,

P
(

β̂j − βj ≥ t̄
)

≤
1− Φ

(

t̄−b1
√

σ2

βj
+w2

)

+AR (w)

Φ (b1/w)
.
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Proof. We use the fact that P (W1+W2 ≥ ū) ≥ P (W1 ≥ −b1)P (W2 ≥ ū+b1) holds

for all constants b1, ū and independent random variables W1 and W2. In our case,

for a standard normal random variable Z we write:

P
(

β̂j − βj + Z ≥ ū
√

σ2
βj

+ w2
)

= P
(

β̂j − βj ≥ ū
√

σ2
βj

+ w2 + b1

)

Φ (b1/w) .

Applying this to ū = t̄−b1
√

σ2

βj
+w2

and combining with Lemma 9 yields the result.

Our next task is to provide an upper bound on R(w).

Lemma 11.

R(w) ≤ 2 ‖τ j‖∞√
27w

.

Proof. Using E |Yi −EYi|3 ≤ σ2
i , |τ ji|3 ≤ ‖τ j‖∞ τ2ji, and that for x ≥ 0,

x

(x+ w2)3/2
≤ 2√

27w
,

we derive

R(w) =

∑

i |τ ji|
3
E |Yi −EYi|3

(

∑

i τ
2
jiE (Yi −EYi)

2
+ w2

)3/2
≤ ‖τ j‖∞

∑

i |τ ji|
2
E (Yi −EYi)

2

(

∑

i τ
2
jiE (Yi −EYi)

2
+ w2

)3/2
≤ 2 ‖τ j‖∞√

27w
.

Proof of Proposition 8. Using Lemmata 10 and 11, we obtain that for βj ≤ β̄j and

for every b1 ∈ R, w > 0,:

P
(

β̂j − β̄j ≥ t̄
)

≤ P
(

β̂j − βj ≥ t̄
)

≤
1− Φ

(

t̄−b1
√

σ2

βj
+w2

)

+A
2‖τj‖

∞√
27w

Φ (b1/w)
.

Therefore,

P
(

β̂j − β̄j ≥ t̄
)

≤ inf
w>0,b1∈R

1− Φ

(

t̄−b1
√

σ2

βj
+w2

)

+A
2‖τj‖

∞√
27w

Φ (b1/w)
.
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which is point 1. For point 2, we apply point 1 to Y ′ = (ω+1)1n−Y where 1n ∈ R
n

is such that 1n,i = 1 for every i. For βj such that βj > β̄j + t̄,

P
(

β̂j − β̄j < t̄
)

≤ P
(

τ ′jY − β̄j ≤ t̄
)

= P
(

τ ′j ((ω + 1)1n − Y )−
(

τ ′j(ω + 1)1n − βj

)

≥ βj − β̄j − t̄
)

≤ ϕBE(σβj
, βj − β̄j − t̄).

Point 3 is immediate.

Appendix B. Proofs for Section 4

Proposition 12. (1) If βj ≤ β̄j then λP (nW̄ ≥ k̄−1)+(1−λ)P (nW̄ ≥ k̄) ≤

θα.

(2) If pβj
> k̄/n then

λP (nW̄ ≥ k̄ − 1) + (1− λ)P (nW̄ ≥ k̄) ≥ λB(k̄ − 1, pβj
) + (1 − λ)B(k̄, pβj

).

Consider a randomized test that rejects the null hypothesis with probability

equal to 1 if nW̄ ≥ k̄, equal to λ if nW̄ = k̄ − 1, and equal to 0 if nW̄ < k̄ − 1.

Point 1 shows that the type I error probability of this test is bounded by θα. A

bound on the type II error probability is given by point 2.10

Proof of Proposition 12. Theorem 5 in Hoeffding (1956) shows that, if k̄ ≥ nEW̄ ,

then P (nW̄ ≥ k̄) ≤ B(k̄,EW̄ ). Similarly, if k̄ < nEW̄ , then P (nW̄ ≥ k̄) ≥

B(k̄,EW̄ ). Since k̄ − 1 > np̄ ≥ nEW̄ , we have

λP (nW̄ ≥ k̄ − 1) + (1− λ)P (nW̄ ≥ k̄) ≤ λB(k̄ − 1,EW̄ ) + (1− λ)B(k̄,EW̄ )

≤ λB(k̄ − 1, p̄) + (1− λ)B(k̄, p̄)

= θα,

10Note that this randomized test is the most powerful test (see, e.g., Lehmann and Romano, 2005,
Example 3.4.2) for testing p ≤ p̄ against p > p̄ at level θα given n i.i.d. observations.
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where the first inequality comes from Hoeffding (1956)’s result, and the second one

from the fact that B(k̄, p̄) is increasing in p̄. Hence point 1. Since EW̄ > k̄/n, we

also have

λP (nW̄ ≥ k̄ − 1) + (1− λ)P (nW̄ ≥ k̄) ≥ λB(k̄ − 1,EW̄ ) + (1 − λ)B(k̄,EW̄ ),

which is point 2.

Proof of Theorem 2. Let βj ≤ β̄j . From point From point 1 of Proposition 12, the

expectation of the non-negative random variable R = λ1nW̄≥k−1 + (1 − λ)1nW̄≥k

is bounded by θα. Markov’s inequality shows

λP (nW̄ ≥ k − 1) + (1 − λ)P (nW̄ ≥ k) = P (R ≥ θ) ≤ ER

θ
≤ α,

which is the desired bound on the type I error probability. We now apply Markov’s

inequality to 1−R:

P (R < θ) = P (1−R > 1− θ) ≤ 1−ER

1− θ
,

which together with point 2 of Proposition 12 implies the stated bound on type II

error probabilities.


