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Abstract

We study the potential evolutionary appeal of rationality in a

model in which different populations differ with respect to their exper-

imentation over new rules of behavior. We find that experimentation

over the set of (strictly) rational rules dominates any other form of

experimentation. This evolutionary advantage of strict rationality,

furthermore, is substantial when learning takes place over a limited

amount of time, or when the environment is stochastically changing.
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1 Introduction

The aim of this paper is to study the potential evolutionary appeal of ratio-

nality. We are particularly interested in actual rational behavior as opposed

to “as if” rational behavior.
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In order to do so we distinguish between behavior that is rational and

behavior that is what we call adapted to the environment it interacts with.

Rationality is in fact a property of individual behavior which is independent

of the environment, and the degree to which a particular behavior is adapted

to a given environment is a priori a distinct question as to whether or not

this behavior is rational. The framework we use to make this distinction is

the context of choice from sets of alternatives.

As in consumer choice theory, we describe an agent’s behavior by a choice

rule (in fact a correspondence). This rule tells us what the agent chooses

when presented with any subset of the set of all possible alternatives. An

agent is rational if her behavior is consistent with a preference relation over

alternatives that is a weak order, i.e. satisfies completeness and transitivity.

When choice sets contain all possible finite sets, which is the framework of

this paper, Arrow (1959)’s well known result shows that an agent is rational

in the above sense if and only if her choice rule exhibits the weak axiom

of revealed preferences of Samuelson (1938). A preference is strict if it

exhibits no ties, and a corresponding choice rule is then strictly rational.

In our model there are multiple populations with a fixed and constant

number of individuals. Each individual lives only for one period, and has

offsprings who live in the period after that. Individuals face various decision

problems multiple times over their lifetime according to some pre-specified

distribution. A choice rule characterizes choices made by the agent. The

environment describes the distribution over choice sets available to agents,

and assigns a fitness to each alternative. Each combination of a choice rule

and an environment induces an average fitness over all decision problems.

We model the evolution of individuals’ rules through experimentation

and selection. At the beginning of each period of time, all individuals of one

population use the rule that gave the best average fitness in the last period.

One of the individuals in this population experiments by randomly drawing

a rule according to this population’s fixed distribution. At the end of this
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period all individuals use the rule of these two that provides the best fitness

given the environment in this period. Thus, all populations have the same

fast selection process. Populations differ (only) by the distributions according

to which new rules are experimented, called their sampling distributions.

We have in mind an environment which may evolve over time, and does

not necessarily leave enough time for the learning process to converge. In

particular, and in contrast to most evolutionary models, our primary interest

is not in the asymptotic properties of the process over rules used by individ-

uals in a fixed environment when the number of generations becomes large.

We rather focus our attention to the properties of the processes after a finite

(thought as being small) number of generations, both when the environment

is fixed across time, or when the environment is itself stochastic.

Looking first at the case of a fixed environment, our first set of results

establishes a dominance of strictly rational rules over other choice rules. For

every dynasty characterized by some sampling distribution, our Rational

Dominance Theorem (Theorem 1) shows the existence of another dynasty

which samples only from the set of all choice rules which are strictly ratio-

nal with the property that the expected fitness of the latter dynasty is no

less than the expected fitness of the former one. Furthermore, the Universal

Rational Dominance Theorem (Theorem 2) shows that a dynasty that ex-

periments uniformly over the strictly rational rules obtains a fitness no less

than the one obtained by any other dynasty using any symmetric sampling

distribution over the set of rules. We stress the fact that these comparisons

hold after any number of generations, be it small or large.

The superiority of strictly rational rules is strict under mild conditions on

the environment. In particular, and, perhaps surprisingly, strictly rational

rules perform better than rational rules even if several alternatives provide

the same level of fitness.

Our second set of results quantifies the adaptation level of different dy-

nasties after a fixed number of generations and the fitness-wedge between
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them. The most striking result is achieved when comparing a non-rational

dynasty which experiments uniformly from the set of all choice rules and

a strictly rational dynasty which experiments uniformly from the set of

strictly rational rules. We prove that there is a significant payoff-wedge in

favor of the strictly rational dynasty. This advantage appears even after just

one generation and persists to at least a number of generations which is a

double exponential in the total number of alternatives. Even with a rather

moderate number of alternatives in mind, this number of generations is a

very large number.

Keeping the environment fixed, all dynasties (as long as the the sampling

distribution has sufficient support) do equally well in the ultra-long run as

they all eventually use a fitness-maximizing choice rule. This means that

in the ultra-long run every individual in these dynasties will behave “as if”

she is rational and “as if” she knows the exact fitness-function, i.e. will be

perfectly adapted. Now, introducing the possibility that environments might

change, no matter whether this happens very frequently or very rarely, will

make this payoff-wedge between the strictly rational dynasty and the non-

rational dynasty persist forever. This is the message of our Universal Rational

Dominance Theorem for changing environments, Theorem 4.

Our study thus shows that a population endowed with a ‘gene of ratio-

nality’ that forces its experimentation to the subset of strictly rational rules

has an evolutionary advantage over any other population. In a set-up that

allows to quantify this advantage, we see that it is substantial for a wide

range of environments. In the case of changing environments, even if there is

a cost associated to rationality, this cost might well be counterbalanced by

the persistent payoff-wedge if environments change with some frequency. In

this respect our paper offers an evolutionary foundation of rational choice,

or rather, more precisely, of strictly rational choice.

The paper is organized as follows. Section 2 introduces the model. Section

3 discusses the distribution of fitness of randomly selected rules. For fixed
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environments, section 4 establishes the superiority of rational rules, Section

5 studies the expected time to reach perfect adaptation, and Section 6 the

time to reach partial adaptation. Section 7 addresses changing environments.

We discuss related literature in Section 8 and finally, conclude in Section 9.

2 Model

2.1 Choice

Let K = {1, ..., K}, K > 1 be the set of all possible alternatives, subsets

of which a decision maker may be presented with at one time or another.

Let L = P(K)\∅ denote the set of all non-empty subsets of K. We call an

element in L a choice set, as we think of these sets as the possible sets of

choices an individual might at one point or another be faced with and be

asked to make a choice from.

Definition 1 A choice rule is a function R : L → L such that R(L) ⊆ L

for all L ∈ L. Let R denote the set of all such choice rules.

Following Uzawa (1956) and Arrow (1959) (see also Chapter 1.B in Mas-

Collel, Whinston, and Green (1995)), let � denote a binary (preference)

relation over elements in K with the interpretation that when i � j an

agent holding this preference relation weakly prefers i over j. The relation

� is complete if for any two i, j ∈ K, i � j or j � i (or both), it is

transitive if i � j and j � l imply i � l. A complete and transitive relation

is called rational (see e.g. Definition 1.B.1 in Mas-Collel, Whinston, and

Green (1995)). In this paper a special case of rational preferences plays a

prominent role, namely, strict preferences. A relation ≻ is irreflexive if, for

all i ∈ K, we do not have i ≻ i. We call a preference relation strictly

rational if it satisfies completeness, transitivity, and irreflexivity.

These definitions extend from preference relations to the corresponding

agent’s behavior.
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Definition 2 A choice rule R ∈ R is rational if there exists a complete

and transitive preference relation � such that, for every L, R(L) is the set

of maximal elements in L for �. Let Rr denote the set of rational rules. It

is strictly rational if it is rational and R(L) is a singleton for all L ∈ L.

Let Rs denote the set of all strictly rational rules.

As an alternative definition, a strictly rational rule is one based on a strictly

rational preference relation.

It is interesting to know how the rationality of a choice rule expresses itself

in terms of the choices made by the agent, or, in other words, what property

a choice rule has to have such as to be derivable from a rational preference.

The answer to this question was given by Arrow (1959) (see also Mas-Collel,

Whinston, and Green (1995)[Proposition 1.D.2]). Namely, the choice rule

R, has to satisfy the weak axiom of revealed preferences, first stated by

Samuelson (1938), see e.g. [Definition 1.C.1 in Mas-Collel, Whinston, and

Green (1995)].1

Our paper provides an evolutionary or learning model in which agents

experiment rules from the set R of choice rules. Nature first fixes the envi-

ronment, which consists of two ingredients, the frequency distribution with

which individuals face each L ∈ L and the function that determines how

much fitness or material payoff any particular choice provides (this is dis-

cussed in detail in section 2.3). For a given environment (or a stochastic

process over environments), we study the evolution of a population charac-

terized by a distribution, over the set of all rules, it samples from. We allow

1This is true since we assume the domain of R is L, and remains true, as shown by
Arrow (1959), as long as this domain includes all finite subsets of K. Arrow (1959) also
shows that, in this case, R satisfies the weak axiom of revealed preferences if and only if
it satisfies Ville (1946)’s and Houthakker (1950)’s strong axiom of revealed preferences.
Houthakker (1950) demonstrates that this strong axiom of revealed preferences is sufficient
for a choice (or demand) function to be rationalizable by a rational preference relation for
the case where the domain of R is the set of all budgets (see e.g. Mas-Collel, Whinston,
and Green (1995)[Chapter 3.J]), a case which does not meet the requirement of Arrow’s
(1959) result.
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this sampling probability to be any distribution q over the set of all rules R.

Given the assumptions that individuals do not a priori know the environ-

ment nature chooses and that nature works on individuals independently of

its choice of environment, we find those distributions q over R of particular

interest, in which no element of K plays a special role. These distributions

are characterized by a symmetry property.

Let Π be the set of all permutations over K. For π ∈ Π and L ∈ L we let

π(L) = {j ∈ K|∃i ∈ L : j = π(i)} be the set-wise extension of π. For π ∈ Π

and R ∈ R let Rπ ∈ R be such that Rπ(L) = π−1 (R(π(L))) for all L ∈ L.

Definition 3 A distribution q over R is symmetric if for every R such

that q(R) > 0 and and every π ∈ Π, q(Rπ) = q(R).

For symmetric distributions of choice rules, the names of alternatives

plays no role. I.e. if one permutes alternatives, the distribution over choice

rules remains the same. One example of a non-symmetric distribution over

decision rules is one that puts probability one on the decision rule induced

by some strict ranking of K. One example of a symmetric distribution over

decision rules is the uniform distribution over the set of all rules. Other

symmetric distributions of special interest are the uniform distribution over

the set of all rational rules, and the uniform distribution over the set of all

strictly rational rules.

There are, however, many other symmetric distributions over decision

rules. Consider for instance the set of rules which are all such that they

designate a best option, which can be any one element of K, but otherwise

does not impose any more restrictions. The best option is chosen whenever

it is available. Let

Ro = {R ∈ R | ∃ j ∈ K : R(L) = {j} ∀ L with j ∈ L}.
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denote this set, which we refer to as the set of optimistic rules. Another set

of rules of interest is what we call the set of pessimistic rules, given by

Rp = {R ∈ R | ∃ j ∈ K : j 6∈ R(L) ∀ L except L = {j}} .

These rules are such that they dedicate a particular choice, which is to be

avoided at all cost, without imposing any restrictions other than that.

The uniform distributions both on the set of optimistic and pessimistic

rules are symmetric. If there are at least three alternatives (K ≥ 3), the sets

of optimistic and pessimistic rules differ, and are neither the set of all rules

nor the set of rational or strictly rational rules. In fact, for K ≥ 3 these

sets are proper subsets of the set of all rules, while the set of strictly rational

rules is properly contained in them.

The only symmetric distribution over choice rules which has a singleton

as support is the one which puts probability one on the rule R0 with the

property that R0(L) = L for all L ∈ L. This is the rational rule for an agent

who is completely indifferent between all choices, and we refer to R0 as the

zero rule. We discuss more symmetric distributions over rules in section 5.

2.2 The environment

Recall that the set of alternatives K = {1, ..., K} is fixed, as is the set of all

choice sets L = P(K)\{∅}, the set of all non-empty subsets of K. Nature

chooses the environment, which consists of two components.

First p : L → IR denotes a probability mass function over all such choice

sets. It describes the frequency with which choice sets are accessible to

agents. In some cases, it is useful to consider neutral distributions, for

which all alternatives play the same role.

Definition 4 A distribution p over choice sets is neutral if, for every per-

mutation π of K, and every choice set L ⊆ K, p(L) = p(π(L)).
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Obviously, the uniform distribution is neutral. Other examples of neutral

distributions over choice sets are the uniform distributions over choice sets of

fixed size l, for 1 ≤ l ≤ K. Other results call for another (mild) assumption

on p.

Definition 5 A distribution p over choice sets has full support if it puts

positive probability on every choice set that contains at least two elements,

i.e. p(L) > 0 for all L ∈ L with |L| ≥ 2.

Second u : K → IR+ is a function from the set of all possible choices to

non-negative real numbers with the interpretation that u(i) is the fitness,

or material payoff, an individual receives when choosing i ∈ K. We extend

any fitness function to the set L of choice sets by setting

u(L) =
1

|L|

∑

k∈L

u(k)

for L ∈ L, with the natural interpretation that u(L) is the expected fitness for

the agent when L is the set of accepted alternatives, using the fact that each

element in L is then eventually chosen by the agent with equal probability.

The pair e = (u, p) is called an environment. Some results will call for a

(mild) assumption on the fitness function u.

Definition 6 A fitness function u is discriminatory if it is injective, i.e.

u(i) 6= u(j) for all i 6= j, i.e. every choice in K provides a distinct level of

fitness.

In order to define the average fitness of a rule R in the environment

e = (u, p), we need to first specify the choices realized by the agent when

facing the choice set L. If R(L) is a singleton, the agent ends up getting the

alternative R(L), and obtains a fitness (for this period) of u(R(L)). If R(L)

is not a singleton we assume that the agent accepts all altermatives in R(L)
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equally, and ends up with each of them with equal probabilities.2 Given our

set extension of u, the average fitness received by the agent is also, in this

case, u(R(L)).

In the environment e = (u, p), the (average) fitness or material payoff of

any rule R ∈ R is then given by

Ue(R) = IEp [u (R(L))] =
∑

L∈L

p(L)u (R(L)) .

We study evolutionary processes under two assumptions on the environ-

ments. One in which there is a unique fixed environment which never changes,

which is discussed in sections 4, 5, and 6, and one in which the environment

follows a stochastic process, studied in section 7. When dealing with a fixed

environment e we suppress the dependence on the environment e in Ue(R)

and simply write U(R).

2.3 The evolutionary or learning process

In a given environment (or stochastic process over environments), a popula-

tion evolves according to a process of experimentation and selection.

At each generation, the population experiments a random rule selected

according to a distribution q on the set of rules. This distribution, which

is fixed across time and is a characteristic of the population, is called the

population’s sampling distribution. The selection process is fast: at the

end of each generation, the rule providing the best fitness in the current

environment is selected, and is adopted by all agents in the population.

The evolutionary model thus has the two central features any model of

evolution should have, mutation (or experimentation) and selection (or learn-

ing). Here mutations are fixed at a rate of one per generation and population

2We believe this to be an innocuous assumption, which, however, provides us with the
property that the set of all decision rules is finite. We do not believe that any additional
insight can be gained by relaxing this assumption.
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and selection is fast. The model allows us to simply analyze each population

by following its representative individual, one for each period t. We thus

speak of the different populations as different dynasties of these representa-

tive individuals.

Our model thus makes a distinction between the rule prevailing in the

population at some generation t from the type of sampling distribution used

by this population. In particular, a population may, at some moment in

time, adopt a rational rule although its sampling distribution q does not put

weight on rational distributions only. In such situations, the rationality of

the population at time t is the result of a learning process among a larger set

of rules, and is only temporary in case an offspring samples a non-rational

but superior rule. On the other hand, if a population’s sampling distribution

puts weight on rational rules only, agents in this population use rational rules

at every point of the evolutionary process.

Each sampling distribution q defines a different dynasty, with the under-

standing that at time 0 the representative agent uses a rule randomly chosen

according to probability distribution q, while all descendants do the same

when experimenting. We focus on the comparison of evolutionary perfor-

mances of different dynasties. In particular, we refer to the dynasty sampling

according to the uniform distribution qr over the set Rr as the rational dy-

nasty, and to the dynasty sampling according to the uniform distribution

qs over Rs as the strictly rational dynasty, and to the dynasty sampling

according to the uniform distribution qu over the whole set of rules R as the

non-rational dynasty.

3 On the fitness distribution of sampled rules

In this section we study and compare the distributions of fitness of rules

selected according to different sampling distributions. The results obtained

here are the building blocks of the Rational Dominance Theorems of Sections
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4 and 7. The reader mostly interested in the comparison of dynasties in the

dynamic set-up may jump to section 4. The main results in sections 4 and

7 can be read without reading this section. Their proofs, however, are based

on the results presented here.

The ingredients of this section are a fixed environment e = (u, p) and

various sampling distributions q as set down in section 2.2.3.

We study the distribution of fitness Ũ q = U(R) = Ue(R) induced by

choosing rule R randomly according to q. This is the random fitness any

member of a dynasty sampling according to q encounters from her random

experimentation. We call such Ũ q, with distribution depending on q, the

sampling fitness of the corresponding dynasty.

The results in this section are as follows. First, the expected sampling

fitness is the same for all symmetric sampling distributions. Therefore, in

terms of expected fitness, and in the absence of learning, all dynasties that

experiment according to symmetric distributions perform equally well.

Second, for a dynasty that experiments according to any q, symmetric

or not, there is another dynasty q′ with support contained in the set of

strictly rational rules such that the distribution of the sampling fitness in-

duced by q′ is a mean-preserving spread of the sampling fitness induced by

q. Moreover, and importantly, the sampling distribution q′, whose fitness is

a mean-preserving spread of that induced by q, is the same for all environ-

ments (with same p), i.e. it does not depend on the fitness function u. This

is saying that we can replace any rule with a convex combination of strictly

rational rules such that the expected fitness of the latter coincides with the

fitness of the former for every fitness-function u.

Third, if p is neutral, there exists a unique sampling distribution q′, whose

fitness is a mean-preserving spread of that induced by any symmetric dis-

tribution q, and this q′ is the sampling distribution of the strictly rational

dynasty, i.e. it is qs, the uniform distribution over all strictly rational rules.

Finally, we provide conditions on p and u under which the mean preserv-
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ing spreads thus constructed are “strict” in the sense that the two distribu-

tions of fitness differ.

All results in this section are proven in Appendix C.

Lemma 1 Let the environment e = (u, p) be arbitrary. The expected value

of the sampling fitness Ũ q according to any symmetric sampling distribution

q is independent of the sampling distribution considered and is given by

IEqŨ
q = IEpu(L).

Although the expected sampling fitness associated to any two symmetric

distributions over choice rules coincide, this is typically not at all true of their

variances. A key to a better understanding of any agent’s sampling fitness

is to look at the probability distribution over the agent’s choices induced by

the distribution over alternatives, p, and some choice rule R. Given p over

choice sets L, and R, let λp(R)(k) denote the overall probability with which

an element k ∈ K is selected under the rule R, it is given by

λp(R)(k) =
∑

L:k∈R(L)

p(L)

|R(L)|
.

We call λp(R) the choice distribution associated to R. For any fitness

function u (and given p), the average fitness of rule R can be expressed as

U(R) =
∑

k λp(R)(k)u(k), so that a rule’s average fitness is entirely deter-

mined by its choice distribution.

For instance, consider the case in which p is uniform on L, and let R

be the strictly rational rule that is induced by the preference relation which

selects the least element available (1 is strictly preferred to 2, which is strictly

preferred to 3, etc.). There are in total 2K − 1 choice sets (all subsets of K

except the empty set are choice sets), and 2K−1 of them contain the preferred

choice (1). This preferred choice is chosen by the agent in all choice sets

that contain it, so that λp(R)(1) = 2K−1

2K−1
. The second preferred choice is
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selected whenever the first preferred choice is unavailable and the second

preferred is available. This is the case for 2K−2 choice sets, and consequently

λp(R)(2) = 2K−2

2K−1
. More generally, λp(R)(l) = 2K−l

2K−1
for every l. Strictly

rational rules span all permutations of this probability vector.

For a given distribution p over choice sets, let Λp denote the set of all

choice distributions, i.e. Λp = {λp(R), R ∈ R}. Similarly, denote by Λs
p

the set of choice distributions induced by strictly rational rules, i.e. Λs
p =

{λp(R), R ∈ Rs}. Obviously Λs
p ⊆ Λp. A graphical depiction of these sets

for K = 3 and p the uniform distribution is given in Figure 1. The following

result locates the choice distributions induced by rational rules as extreme

points in the set of choice distributions.

Lemma 2 Given any distribution p over choice sets, every choice distribu-

tion in Λp is a convex combination of choice distributions in Λs
p.

Lemma 2 shows that for any realization of Ũ q, the underlying state, a rule

R ∈ R, can be replaced by a lottery over strictly rational rules in Rs with

the same expected choice distribution. An important consequence is that,

for every fitness function u, the lottery over rules in Rs achieves the same

expected fitness as the rule R. If we fix a distribution q on R and replace

each rule of R by its corresponding lottery over rules in Rs, we obtain a

distribution q′ over Rs such that, for every fitness function u, the distribution

of Ũ q′ when rules R are drawn according to q′ is a mean preserving spread of

the distribution of Ũ q when rules R are drawn according to q. We thus have

the following lemma.

Lemma 3 Let p be any distribution over choice sets. For every sampling

distribution q, there exists a sampling distribution q′ with q(Rs) = 1 such

that, given any fitness function u, the sampling fitness Ũ q′ induced by q′ in

the environment (u, p) is a mean preserving spread of the sampling fitness Ũ q

induced by q.
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Note the order of quantifiers in Lemma 3. For a given distribution over

choice sets p, the sampling distribution over exclusively strictly rational rules

such that Ũ q′ is a mean preserving spread of Ũ q is the same for all fitness

functions u. Yet, the distribution q′ still depends on q. Interestingly, under

some symmetry assumptions, q′ can be taken as the uniform distribution on

Rs, and the dependence on q disappears.
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Figure 1: Choice distributions of strictly rational rules (big dots) and of all
rules (small dots), for K = 3 when p is the uniform distribution over choice
sets. The corners of the simplex represent the infeasible case of choosing
one and the same of the three alternatives in K = {A,B,C} in all decision
problems. The convex hull of choice distributions induced by strictly rational
rules clearly includes all feasible choice distributions.

Lemma 4 Assume p is neutral and q is a symmetric sampling distribution.

Then the distribution q′ of Lemma 3 can be taken as qs.

Note that both the assumption that p is neutral as well as the assumption

that q is symmetric are necessary in Lemma 4, in the sense that we can find

counterexamples to the Lemma for a non-symmetric q and also for a non-

neutral p, separately. First, consider the distribution q which puts probability

1 on the single rule which so happens to be a best rule. For almost every p
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there is no symmetric distribution which is a mean-preserving spread of this

distribution. To see that neutrality is needed consider the following example.

Example: Consider 3 alternatives, K = {A,B,C}, and the following 8

choice rules (we omit their definitions on singletons).

R1 R2 Rs
AB Rs

AC Rs
BA Rs

BC Rs
CA Rs

CB

ABC ABC ABC A A B B C C

AB A B A A B B A B

BC B C B C B B C C

AC C A A A A C C C

The rules R1 and R2 are not rational, and the distribution q that puts

equal weight on each of them is symmetric. To see this, note that for

all permutations π which switch exactly 2 elements in K, i.e. these three:

π(A) = A, π(B) = C, π(C) = B; π(A) = B, π(B) = A, π(C) = C; and

π(A) = C, π(B) = B, π(C) = A we have that Rπ
1 = R2 and Rπ

2 = R1, while

for the other three permutations we have that Rπ
1 = R1 and Rπ

2 = R2.

The other 6 rules are the strictly rational rules. Let p put probabil-

ity 1/2 each on {A,B} and {B,C}. This p is not neutral (as neutrality

would here require that {A,C} receives the same probability as the other

two sets). Under p, the distribution λp(R1) induced over choices in K is

given by λp(R1) = 1
2
A+ 1

2
B. With R2, the corresponding distribution λp(R2)

is given by λp(R2) = 1
2
B + 1

2
C. The choice distributions induced by the 6

rational rules are λp(R
s
AB) = 1

2
A + 1

2
B, λp(R

s
AC) = 1

2
A + 1

2
C, λp(R

s
BA) = B,

λp(R
s
BC) = B, λp(R

s
CA) = 1

2
A + 1

2
C, and λp(R

s
CB) = 1

2
B + 1

2
C.

Attach the following material payoff to the three alternatives. Let u(A) =

0, u(B) = 2, u(C) = 4. The expected fitness for both distributions in the

environment (u, p) equals 2. The variance of Ũ q induced by q is 1, while the

variance of Ũ qs

induced by the uniform distribution qs over strictly rational

rules is 1
3
. Hence, the uniform distribution over strictly rational choice rules

is not a mean preserving spread of the distribution of λp(R) induced by the

symmetric distribution q.
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The following Lemmata provide conditions under which the mean pre-

serving spread in Lemma 3 is strict.

Lemma 5 Given p and q, there exists a distribution q′ as in Lemma 3 such

that the obtained mean preserving spread is strict whenever either i) p has

full support, u is discriminatory, and q(Rs) < 1 or ii) p, q have full support

and u is not constant.

Note that the provided proof in the appendix shows that part ii) of Lemma 5

holds under the weaker condition that q(R0) > 0, where R0 is the zero-rule.

This suggests that the conditions of the Lemma can be weakened further.

Under the symmetry assumptions of Lemma 4, a strict mean preserving

spread obtains under minimal conditions on u, and q.

Lemma 6 Let the distribution over choice rules p be neutral and have full

support and u be non-constant. Then Ũ qs

, the sampling fitness of the strictly

rational dynasty, sampling according to the uniform distribution qs over Rs,

is a strict mean preserving spread of Ũ q, for any symmetric sampling distri-

bution q with q(Rs) < 1.

Note that both conditions, that u is not constant and that q(Rs) < 1 are

also necessary.

4 Ranking of dynasties in a fixed environ-

ment

We use the results of the previous section to show that for any dynasty with

sampling distribution q there is another dynasty with sampling distribution

q′ that puts weight 1 on Rs (i.e. it uses strictly rational rules only), such that

for any time t the expected fitness of the latter dynasty exceeds that of the

former. When q is symmetric, q′ can be taken as the uniform distribution qs

over strictly rational rules.
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Furthermore, under mild assumptions on the environment, at any time

t > 1 the strictly rational dynasty has strictly higher expected fitness than

any symmetric dynasty.

It is important to understand how the expected fitness of a dynasty at gen-

eration t is related to the sampling distribution of that dynasty. Let q be any

sampling distribution, and Rt denote the choice rule experimented by gener-

ation t of the dynasty. The sampling fitness of generation t is Ũt = U(Rt),

and Ũ1, . . . , Ũt are i.i.d. according to the distribution of the sampling fitness.

Because each generation adopts the best rule between the one prevalent at

the previous generation and the experimented one, the obtained fitness for

generation t is given by Zt = max(Ũ1, . . . , Ũt).

Theorem 1 (Rational Dominance) Let p be arbitrary, and let q be any

sampling distribution. There exists a sampling distribution q′ such that q′(Rs) =

1 with the property that, for any fitness function u, letting Zt and Zs
t be the

fitness of the t-th generations of dynasties with sampling distribution q and

q′ respectively,

IEZs
t ≥ IEZt for all t ≥ 0

with strict inequality for all t > 0 if either i) p has full support, u is discrim-

inatory, and q(Rs) < 1 or ii) p, q have full support and u is not constant.

Proof: By Lemma 3 there exists a sampling distribution q′ whose associated

random fitness Ũ s
t is a mean-preserving spread of the random fitness Ũt as-

sociated to q. Under i) or ii) this mean-preserving spread can be taken to be

strict by Lemma 5. Note that all Ũ s
t and Ũt are independent and that all Ũt,

being in fact i.i.d., have the same support. The result (both the weak and

the strict inequality) thus follows from Proposition 7 in the Appendix. QED

Theorem 2 (Universal Rational Dominance) Let p be neutral and let q

be any symmetric sampling distribution. Letting Zt be the fitness of the t-th

generations of dynasties with sampling distribution q and Zs
t be the fitness of
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the t-th generation of the strictly rational dynasty (sampling according to the

uniform distribution qs over Rs),

IEZs
t ≥ IEZt for all t ≥ 0

with strict inequality for all t > 0 if u is non-constant, p has full support,

and q(Rs) < 1.

Proof: Let Ũ s
t and Ũt be the random fitness associated to the uniform dis-

tribution on strictly rational rules and to q, respectively. By Lemma 4, Ũ s
t

is a mean-preserving spread of Ũt. If u is non-constant, p has full support,

and q(Rs) < 1, moreover, this mean-preserving spread can be taken to be

strict by Lemma 6. Note that all Ũ s
t and Ũt are independent and that all Ũt,

being in fact i.i.d., have the same support. The result (both the weak and

the strict inequality) thus follows from Proposition 7 in the Appendix.QED

A corollary of this Theorem is that, provided p is neutral and has full support,

the strictly rational dynasty (with uniform sampling qs over Rs) performs

strictly better than the rational dynasty (with uniform sampling qr over

Rr) as long as the fitness function u is non-constant. Note that the fitness

function can well have ties, i.e. two elements i, j ∈ K have u(i) = u(j). One

might think that the rational dynasty (which allows for indifferences) might

have an advantage in this situation. Yet, this is not the case.

Let us summarize the findings of this section. For any distribution p and

any dynasty, there exists a dynasty, which samples over strictly rational rules

only, that performs at least as well as the former, independently of the fit-

ness function u. The latter does strictly better than the former under mild

assumptions. In this sense, strictly rational dynasties are always superior

to non-rational (or even just simply rational) ones. Furthermore, a much

stronger result obtains if p is neutral. In this case the dynasty that samples

uniformly over strictly rational rules does at least as well as, and in many

cases strictly better than, any other symmetric dynasty. Hence, under sym-
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metry and neutrality, the strictly rational dynasty is superior to any other

dynasty, independently of the environment. In fact, under very mild condi-

tions on the environment, the strictly rational dynasty is strictly superior to

even the rational dynasty.

5 The long-run dynamics

In this section we address the long-run convergence of the dynamics. We

study what rules are to be observed after a large number of generations, and

whether these rules are necessarily rational or not. We also question whether

full adaptation can be reached by a given dynasty, i.e. whether a dynasty will

eventually use a rule that maximizes fitness, and compare the expected time

to full adaptation for different dynasties.

5.1 Full adaptation

Consider any environment e = (u, p), and a dynasty with sampling distribu-

tion q. Among the rules that are sampled with positive probability, we let

Rm
q denote those with maximal fitness under (u, p), i.e.

Rm
q =

{

R ∈ R|R ∈ arg max
R′∈R:q(R′)>0

U(R′)

}

.

The learning process only allows rules with higher fitness to replace rules

with lower fitness. Therefore, in a fixed environment, prevalent rules yield

higher and higher fitness, until a rule in Rm
q is reached and the learning

process reaches a steady state.

We say that full adaptation is reached when the dynasty uses a rule that

maximizes fitness over the whole set of rules. Let R∗ be this set of fitness-

maximizing rules, i.e. R∗ =
{

R ∈ R|R ∈ arg max
R′∈R U(R′)

}

.

Therefore, if Rm
q ∩R∗ is non-empty, the dynasty reaches full adaptation in
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the long-run. In this case, can we say if rational rules prevail in the long-run?

Given that the prevalent rule in the long run can be any element of Rm
q ∩R∗,

the answer depends on whether this set contains only rational rules or not.

Proposition 1 R∗ always contains a strictly rational rule. It is a singleton

containing this strictly rational rule if and only if p has full support and u is

discriminatory.

Proof: Assume, without loss of generality, that u(1) ≥ u(2) ≥ . . . ≥ u(K).

The strictly rational rule R∗ that corresponds to the strict preferences 1 ≻

2 ≻ . . . ≻ K maximizes fitness choice set per choice set, hence maximizes

U(R) over R.

If p has full support and u is discriminatory, then any fitness-maximizing

rule must maximize fitness in any choice set L with at least two elements

(since all such choice sets occur with positive probability) and the only fitness

maximizing choice in L is the one chosen by R∗ (since u has no ties). Hence

R∗ is the only fitness-maximizing choice rule.

If u is not discriminatory then there exist two alternatives l, l + 1 such

that u(l) = u(l + 1), and replacing l by l + 1 in R∗({l, l + 1}) gives another

fitness-maximizing rule. If p does not have full support then there exists a

choice set L containing at least two alternatives with p(L) = 0, and altering

R∗(L) also leaves the fitness unchanged. QED

In the very-long run, every dynasty is perfectly adapted as long as it sam-

ples a payoff-maximizing rule with positive probability. If one is interested

in the long-run dynamics, sampling over the set of strictly rational rules Rs

and sampling over any superset of Rs perform equally well.

It is meaningful to compare the evolutionary performance of a strictly

rational dynasty endowed with a gene that restricts it to using strictly ra-

tional rules only (its sampling distribution is qs, uniform over Rs), and of a

non-rational dynasty that samples all rules equally (its sampling distribution

is qu, uniform over R), in an environment e = (u, p), where p has full support
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and u is discriminatory. According to Theorem 2, the non-rational dynasty

performs better at any generation t than the rational dynasty. However, in

the long-run, the two dynasties converge to the same rule, and both are fully

adapted. It is interesting, though, to notice that, on the path to full adapta-

tion, only the strictly rational dynasty uses rational rules at every generation.

The non-rational dynasty may use non-rational rules during some transitory

period.

Thus, restricting sampling to strictly rational rules makes no difference

if learning may take place over a large number of generations. It may there-

fore seem that a “gene of rationality” would provide only a transitory, and

possibly not very strong, advantage to a population embedded with it. But

how long is the long run in this case and is it realistic to assume that learn-

ing can take place over a large enough number of generations in a stable

environment? This question is the topic of the next subsection.

5.2 How long is the long run

Let us focus on a fixed environment e = (u, p), where p has full support and

u is discriminatory, and let R∗ ∈ R denote the unique rule which is fully

adapted to the environment (u, p).

For a dynasty that samples according to q, let T (q) denote the number

of generations needed to reach full adaptation, i.e. the number of generations

after which the rule R∗ prevails in the dynasty. T (q) is possibly infinite, and

if we let Rt denote the rule sampled by generation t we have that T (q) =

inf{t, Rt = R∗}.

Proposition 2 T (q) is infinite if q(R∗) = 0, and otherwise, T (q) follows a

geometric distribution with parameter q(R∗). In particular, in the latter case,

the expected time before full adaptation is given by IET (q) = 1
q(R∗)

.

If the sampling distribution q is uniform over its support R̃ ⊂ R then

q(R∗) = 1

|
˜R|

, where |R̃| is the number of rules in R̃. This means that for
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uniform sampling distributions, the expected time a dynasty will achieve full

adaptation and, hence, maximal fitness, is just given by the cardinality of

the set of rules this dynasty samples from, provided the optimal rule R∗ is

among the eventually sampled ones.

The set of rules with the shortest expected time to full adaptation is,

of course, the singleton set including only the one rule which is induced by

the correct ranking given by the environment u. The (expected) time to full

adaptation is then simply 1. Among all symmetric distributions, the quickest

to achieve full adaptation is the uniform distribution over the set of strictly

rational rules.

Theorem 3 Assume that p has full support and u is discriminatory. Let qs

be the uniform distribution over Rs, and let q 6= qs be any other symmetric

sampling distribution. Then IET (q) > IET (qs).

Proof: Let q 6= qs be symmetric. If q(R∗) = 0 then T (q) = ∞ > T (qs)

almost surely. If q(R∗) > 0, by the symmetry of q, q(R∗) = q(R′) for all

R′ ∈ Rs. But then q(R∗) = 1
|Π|

q(Rs) < 1
|Π|

= qs(R∗), which proves the result

by Proposition 2. QED

Hence, strict rationality provides some evolutionary advantage in the

sense that it minimizes the expected time to full adaptation among all sym-

metric distributions.

Note that Theorem 3 actually extends to all environments, in which case

not all fully adapted rules are strictly rational. In this case, we conjecture

that the uniform distribution among all strictly rational rules still minimizes

(maybe not strictly) the expected time to full adaptation among all symmet-

ric distributions.

The size of some remarkable symmetric sets of rules is given in section

A. The following table compares the expected time to full adaptation for the

non-rational and rational dynasties for different values of the complexity of

the environment.
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Complexity (K) Strictly rational Non-rational

3 6 24

5 120 1011

10 106 10658

Expected time to perfect adaptation

Consider for instance a very fast reproducing organism. Assuming a time

between generations of 1h and for a complexity of just 5, the expected time

for full adaptation already of the order of 10 million years. Even for the

strictly rational population, which is the fastest symmetric one to reach full

adaptation, if the complexity of the environment is sufficiently large, it may

not be realistic to assume that the environment is stable for a long enough

number of generations so that full adaptation can be reached.

The next section measures the evolutionary advantage of the strictly ratio-

nal population over the non-rational population when only partial adaptation

can be reached.

6 Time to partial adaptation

As shown in the previous section, full adaptation cannot be achieved in a

reasonable convergence time, even for the strictly rational population, when

the complexity of the environment is not small, but not necessarily very large.

In this section, giving up on full adaptation, we estimate the time necessary

for different dynasties in order to achieve some degree of partial adaptation.

In particular, we address the question of the superiority of the rational

dynasty over other symmetric dynasties after a small number of generations.

We thus estimate the expected fitness of different dynasties in the short run.

Although we know from Theorem 2 that the strictly rational dynasty

achieves no less than any other symmetric dynasty, the difference in expected

fitness between the two dynasties after a fixed number of generations depends
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on several parameters.

First, this difference must depend on the environment itself. If under u,

all alternatives yield close fitness, the expected fitness of all rules, and hence

all dynasties, are very close to one another. For this reason, we study the

more interesting case in which u’s values are evenly spread, taking for u a

bijection from K to itself. Also, the probabilities, defined by p, over sets of

alternatives, play an important role. If p is concentrated over one choice set,

or on a set of few choice sets, the behavior of choice rules outside of this set

have a small impact on the overall fitness. For this reason, our benchmark is

the uniform distribution over all choice sets.

Second, the difference in expected fitness depends on the dynasties. Our

main focus is on the comparison between the uniform distribution over strictly

rational rules and the uniform distribution over all rules. This is particularly

meaningful, as we know that the strictly rational rules possess an advantage

over any other set of rules, and, in the absence of rationality, we can assume

the rules sampled to be distributed uniformly over the whole set of rules.

We also derive results for dynasties sampling uniformly over optimistic rules,

and over deterministic rules.

Let Ũ q denote the random fitness of a rule R ∈ R randomly drawn

according to some symmetric distribution q. From Lemma 1, we know that

the expected fitness of a rule drawn according to a symmetric distribution

does not depend on the distribution at hand. Given u is a bijection from K to

K we can, as an application of Lemma 1, in fact, calculate this expectation.

It is given by IEqŨ
q = K+1

2
. In particular, this is the fitness of the zero

rule, which always accepts the whole choice set offered (R0(L) = L for every

L ∈ L).

For this environment we also obtain simple bounds for the fitness of any

rule. The maximal payoff (fitness) any rule can obtain is denoted by V and
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is equal to

V =
2K−1

2K − 1
K +

2K−2

2K − 1
(K − 1) + . . . +

1

2K − 1
1

=
1

2K − 1

K−1
∑

l=0

(K − l)2K−(l+1) =
2K

2K − 1
[(K − 1) +

1

2K
].

Let us renormalize payoffs, and define the performance of a rule R as

ρ(R) =
U(R)−K+1

2

V −K+1

2

. Thus, a performance of 0 is achieved by the zero rule,

whereas a performance of 1 corresponds to full adaptation. The expected

time to reach full adaptation was studied in section 5 5.2. We now investi-

gate the expected time to reach partial adaptation for different populations,

defined as the expected time to reach a performance of e.g. 1%, 10%, or 40%.

For a given dynasty, let ρ(R̃) be the performance of a randomly sampled

rule R̃. For 0 ≤ ρ ≤ 1, let Tρ be the random variable corresponding to the

first generation reaching a performance of ρ or more. The same logic as in the

case of full adaptation shows that Tρ follows a geometric distribution with

parameter q(ρ(R̃) ≥ ρ) if q(ρ(R̃) ≥ ρ) > 0, and is infinite otherwise. In the

former case, the expected time to reach a performance of ρ is thus IETρ =
1

q(ρ(R̃)≥ρ)
. Hence, the expected time to partial adaptation is closely related

to how concentrated the distribution of ρ(R̃) is around 0. We investigate

this question in the following subsections, for different dynasties. We first

investigate the dynasties defined by the uniform distributions over all rules as

well as the set of all singleton rules, and then consider the dynasties defined

by the uniform distributions over all optimistic rules as well as the set of all

strictly rational rules. The final subsection contrasts the two sets of results

obtained.

6.1 On all rules

Let q be the uniform distribution over either R (the set of all rules) or the

set of all singleton rules, denoted Rf . The key point of this subsection is to
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recognize that, when R drawn uniformly in either the whole set of rules or in

the whole set of single-valued rules, the choices made in different choice sets

are independent. We recall the following result (Theorem A.1.18 in Alon and

Spencer (2000)) from the theory of large deviations.

Lemma 7 Let X1, . . . , Xn be a family of mutually independent random vari-

ables with each IEXi = 0 and no two values of any Xi are ever more than 1

apart. Then, for a > 0,

P (X1 + . . . + Xn > a) ≤ exp(−
2a2

n
).

An application of Lemma 7 allows us to derive the following lower bound

on the expected time to reach a performance of δ.

Proposition 3 For the dynasties defined by the uniform distribution either

over the whole set of rules, or over the set of single-valued rules, the expected

time to reach a performance of δ is at least exp(δ22K−4) for K ≥ 4.

Proof: Recall that for a randomly drawn rule R its random fitness is given

by U =
∑

L∈L p(L)u(R(L)), where p(L) = 1
2K−1

. Let ZL = u(R(L))−IEqu(R(L))

K−1
.

Then (in both cases) the family (ZL)L is mutually independent, IEqZL = 0

for each L and no two values of ZL are more than 1 apart. Since
∑

L∈L ZL =
2K−1
K−1

(U − IEpU) an application of Lemma 7 shows that for a > 0 we have

q
(

2K−1
K−1

(U − K+1
2

) > a
)

≤ exp
(

− 2a2

2K−1

)

. Substituting for a = 2K−1
K−1

(V −
K+1

2
)δ, we obtain

q

(

U − K+1
2

V − K+1
2

> δ

)

≤ exp

(

−
2(2K−1

K−1
(V − K+1

2
)δ)2

2K − 1

)

.

Given
V −K+1

2

K−1
> 1

4
for K ≥ 4, the previous inequality allows us to derive

the bound q(ρ(R) > δ) < exp
(

−2K−1
8

δ2
)

< exp
(

−δ22K−4
)

, where the last

inequality follows from the fact that, for K ≥ 4, 2K−1
8

> 2K−4. QED
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6.2 On optimistic and strictly rational rules

Proposition 4 For the rational and for the optimistic dynasties, the ex-

pected time to reach a performance of δ = 2j−K−2
2K−2

, j = 1, . . . , K is no more

than 4
1−2δ

.

Note that Proposition 4 only yields (interesting) bounds on performance

levels, δ, between 0 and 1
2
. One could, in principle, modify the proof such as

to cover performance levels above 1
2
. As we here are interested in the short

run performance of these dynasties we do not pursue this extension here.

Let q now be the uniform distribution over either Ro (the set of optimistic

rules) or Rs (the set of strictly rational rules). Let U o and U s, respectively,

denote the random fitness of a rule drawn uniformly from Ro and Rs. We

first prove the following lemma, expressed in terms of payoffs instead of

performances.

Lemma 8 For both U = U o and U = U s we have q
(

U ≥ j

2
+ K

4

)

≥ K−j+1
2K

.

Proof: It is sufficient to consider the case in which the environment u is the

identity mapping from K to K. Let R be a randomly chosen optimistic or

strictly rational rule. Let R(K) denote its preferred element in K (which is

unique in both cases). Since R is chosen uniformly, the distribution of R(K) is

uniform in K. i.e. q (R(K) = j) = 1
K

for all j ∈ K and q (R(K) ≥ j) = K−j+1
K

for all j ∈ K. For j ∈ K let Aj be the event R(K) = j, i.e. the event (set of

rules) with the property that the agent chooses j if presented with choice set

K. Conditional on the agent’s rule being in Aj, 2K−1 of all choice sets, those

L ∈ L with j ∈ L, also must provide fitness j. The agent’s choice in the other

2K−1−1 choice sets, those L ∈ L with j 6∈ L, is completely independent of Aj.

For these 2K−1 − 1 choice sets the agent’s random payoff, denoted U ′, is that

derived from the payoff of a choice rule from a symmetric distribution when

there are K − 1 choices and payoffs are in the set {1, 2, ..., j − 1, j +1, ..., K}.

This random variable U ′ is first-order stochastically dominated by another

random variable Û which is the payoff obtained by a rule over K − 1 choices
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drawn according to the same symmetric distribution when payoffs are in the

set {1, 2, ..., K − 1}. This last distribution is symmetric around its mean K
2
.

Hence,

q

(

U ≥
2K−1

2K − 1
j +

2K−1 − 1

2K − 1

K

2
|Aj

)

≥
1

2
.

Now, for any x, q (U ≥ x) =
∑K

j=1 q (U ≥ x|Aj] q [Aj). Also for any j′ ≥ j

q

(

U ≥
j

2
+

K

4
|Aj′

)

≥ q

(

U ≥
2K−1

2K − 1
j +

2K−1 − 1

2K − 1

K

2
|Aj′

)

≥
1

2
.

Hence,

q

(

U ≥
j

2
+

K

4

)

=
K
∑

j′=1

q

(

U ≥
j

2
+

K

4
|Aj′

)

q
(

Aj′
)

≥
∑

j′≥j

q

(

U ≥
j

2
+

K

4
|Aj′

)

q
(

Aj′
)

≥
∑

j′≥j

1

2

1

K
=

K − j + 1

2K
.

QED

Proof of Proposition 4: Let ρ denote the performance of either a uniformly

chosen optimistic rule or a uniformly chosen rational rule. Lemma 8 shows

that q
(

ρ ≥
j

2
+K

4
−K+1

2

V −K+1

2

)

≥ K−j+1
2K

. Using that V ≤ K we obtain q
(

ρ ≥ 2j−K−2
2K−2

)

≥
K−j+1

2K
. Setting δ = 2j−K−2

2K−2
, this becomes q(ρ ≥ δ) ≥ 1

4
− K−1

2K
δ ≥ 1−2δ

4
. QED

6.3 The advantage of rationality for partial adaptation

Using the results of the previous subsections, we compare the performances

of the strictly rational dynasty with that of the non-rational dynasty. When

the complexity of the environment is large enough, full adaptation cannot be

reached in a reasonable number of generations, and the adequate comparison

should be on the time needed to reach partial adaptation.
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Proposition 3 shows us that the expected time to reach a performance of

δ for the non-rational dynasty (single valued or not) is a double exponential

in the complexity of the environment, K. As shown by the following table,

the number of generations needed to reach a performance level grows very

fast with the complexity of the environment. Hence, unless the environment

is very stable, and adaptation can take place over a large number of periods,

the non-rational population possesses no significant advantage over a dynasty

that would simply implement the zero-rule at every generation.

K\δ 1% 5% 10%

5 1.08 8 4000

6 2.5 109 1039

7 7300 1096 10386

Lower bound on time to a performance of δ for various levels of complexity

K; non-rational population

The results obtained for the non-rational dynasty contrast sharply with

the results obtained for the rational (or optimistic) dynasty, for which Propo-

sition 4 provides an upper bound on the expected time to reach a performance

which is independent of the complexity of the environment. As shown by the

following table, even after a small number of generations, the performance

of the rational dynasty is already substantial.

K\δ 1% 25% 40%

Any 5 8 20

Upper bound on time to a performance of δ (independent of complexity K);

strictly rational population

7 Changing environments

In this section we investigate the evolutionary performance of populations in

a changing environment. The environment now follows a stochastic process,
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and we let et = (ut, pt) be the environment faced by generation t.

The environment is renewed at stochastic times, and τ = (τ1, τ2, . . .)

where τk < τk+1 describes the process of renewal times. An interesting ex-

ample is the case in which the intervals τk+1 − τk between renewal times

follow exponential processes with same parameter, but our results cover the

more general case where the probability that the environment is renewed at

a given time is history dependent.3 In particular, the rate of renewal of the

environment needs not be constant over time. Periods of high instability of

the environments can be followed by highly stable periods.

Environments are drawn according to a distribution Q over the set E

of environments. The first environment, e1, is drawn according to Q. If the

environment is renewed at stage t > 1 (t = τk for some k), a new environment

et is drawn according to Q. Otherwise, the environment stays the same and

et = et−1.

Recall that, for an environment e = (u, p) and a choice rule R ∈ R the

rule’s average fitness in that environment is given by Ue(R) = IEpu(R(L)) =
∑

L∈L p(L)u(R(L)).

We turn to the evolution of rules adopted by agents. Each generation t

samples a rule R̂t where the family of sampled rules is i.i.d. according to the

dynasty’s sampling distribution q. The prevalent (or adopted) rule at gener-

ation t is denoted Rt. The first generation adopts the sampled rule R1 = R̂1.

Generation t+1 adopts the best rule between the prevalent rule at time t and

the sampled rule at time t+1, where both rules are evaluated in the environ-

ment in place at stage t+1. Thus, Rt+1 = arg max
{

Uet+1
(Rt), Uet+1

(R̂t+1)
}

.

The induced process over agents’ fitness is given by Zt = Uet
(Rt).

A distribution Q over environments in E is symmetric if for every e =

(u, p) ∈ E , p is neutral and for every permutation π : K → K we have

that Q(e) = Q(eπ), where eπ = (uπ, pπ) and uπ(L) = u(π(L)) and pπ(L) =

3It is, however, not allowed to depend on rules or the environment prevalent at the
time. We are thus ruling out cases in which the environment is influenced by the rules
individuals follow, i.e. we are ruling out phenomena like human induced global warming.
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p(π(L)) for all L ∈ L.

The following result shows that, if the distribution of environments is

symmetric, the strictly rational dynasty performs better than any dynasty

with a symmetric sampling rule, after any number of generations.

Theorem 4 (Universal Dominance Theorem for Changing Environments)

Let Q be a symmetric distribution over E and let q be a symmetric sampling

distribution over R. Letting Zt be the fitness of the t-th generation of the dy-

nasty with sampling distribution q and Zs
t be the fitness of the t-th generation

of the strictly rational dynasty,

IEZs
t ≥ IEZt for all t ≥ 0

with strict inequality for all t > 1 if there exists an environment e = (u, p)

in the support of Q such that u is non-constant and p has full support, and

q(Rs) < 1.

Proof: We prove a stronger result, which is that the inequality holds con-

ditional on any realization of the process τ of renewals of the environment.

We first prove that the weak inequality also holds conditional on the current

environment et. Let τk ≤ t < τk+1. We then have et = et−1 = . . . = eτk
,

and denote this environment by e. Conditional on τ and on e the expected

fitness of generation t for the non-rational dynasty is given by

IE[max{Ue(Rτk−1), Ue(R̂τk
), . . . , Ue(R̂t)}|τ, e].

Note that the random variables Ue(Rτk−1), Ue(R̂τk
), . . . , Ue(R̂t) are indepen-

dent given τ , e, and that they all share the same support. Given the sym-

metries of Q and q, the distribution of Rτk−1 given e, τ is symmetric, and so

are the distributions of R̂τk
, . . . , R̂t. Also Ue(R

s
τk−1), Ue(R̂

s
τk

), . . . , Ue(R̂
s
t ) are
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independent given τ , e. From Lemma 4 and Proposition 7 we obtain

IE[max{Ue(Rτk−1), Ue(R̂τk
), . . . , Ue(R̂t)}|τ, e] ≤

IE[max{Ue(R
s
τk−1), Ue(R̂

s
τk

), . . . , Ue(R̂
s
t )}|τ, e]

If there exists an environment e = (u, p) in the support of Q such that u is

non-constant and p has full support, and q(Rs) < 1 then this inequality is

strict by the fact that Ue(R̂
s
t ) is a strict mean preserving spread of Ue(R̂t)

due to Lemma 6 and the appropriate appeal to Proposition 7. The Theorem

then follows from averaging over all τ, e. QED

Theorem 4 shows that the main message of the discussion of evolution in

a fixed environment remains unchanged in a changing environment. If the

distribution generating environments is symmetric then a dynasty using a

symmetric sampling distribution is fitness-dominated in every generation by

the strictly rational dynasty. We conjecture that we can relax either (but

not both) of the two symmetry assumptions and yet obtain the same result.

One may wonder how the results of Section 6 that quantify the advantage

of strictly rational rules over the whole set of deterministic rules can be

generalized from the case of a fixed environment to the case of a changing

environment. Instead of adapting or mimicking the logic of the proofs of

section 6, we show that the expected fitness of a symmetric dynasty t stages

after a change in environment has natural bounds in term of the expected

fitness of the same dynasty after t generations.

Fix a realization of τ , and let Rτk−1 denote the inherited rule at stage τk.

Assume that τk + t ≤ τk+1. The fitness of generation τ + t (thus t stages after

the last environment change) is Zτk+t = max{Ue(Rτk−1), Ue(R̂τk
), . . . , Ue(R̂τk+t)},

where R̂τk
, . . . , R̂t are i.i.d. according to Q. Let Zf

t = max(Ue(R̂τk
), . . . , Ue(R̂τk+t))

denote the fitness of the dynasty after t stages in the fixed environment e.

Bounds on Zf
t are obtained in section 6.

Proposition 5 Assume that Q, q are symmetric, fix realizations of the re-
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newal times τ and consider a stage t such that τk + t ≤ τk+1. We have

IE[Zf
t |τ, e] ≤ IE[Zτk+t|τ, e] ≤ IE[max{Ue(R̂

s), Zf
t }|τ, e]

where R̂s is a uniformly drawn strictly rational rule.

Proof: The left-hand inequality is immediate. For the right-hand inequality,

note that given τ and e, Ue(R̂τk
), . . . , Ue(R̂τk+t) are independent and the

distribution of R̂τk
is symmetric, and apply Lemma 4 and Proposition 7.

QED

This result demonstrates two things. A dynasty does better t stages after

the last change of environment than after t stages in the fixed environment

case (simply, due to the inheritance of a rule from the previous environment).

Nevertheless, this advantage is bounded by the advantage that would be

provided by adding one strictly rational uniformly chosen rule to the rules

sampled by the dynasty.

This shows that, analogous to results that quantify the adaptation level

of a dynasty in the fixed environment, very similar bounds can be provided

for the expected fitness of the same dynasty in a changing environment.

8 Related literature

The literature offers many evolutionary models in several different contexts.

A great survey is Robson (2001b). The closest to our paper is perhaps

Robson (2001a) who shows that individuals evolve to evaluate gambles (two-

armed bandits) according to the “correct” expected utility criterion. The

individuals in Robson (2001a)’s model choose at each point in time among

two arms of a multi-armed bandit. Each arm provides a lottery over a given

and fixed finite set of consumption levels, each of which in turn provides a

fixed Poisson distributed number of offspring which only depends on the con-

sumption level. While the set of consumption levels and its link to offspring
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is fixed, the distribution of the two arms changes at discrete points in time.

Individuals, however, always have enough time to correctly figure out these

two distributions. One might say these individuals are perfectly adapted to

the distribution over consumption levels of the two arms but not necessarily

adapted to the correct link between consumption levels and expected number

of offspring.

Robson (2001a) shows that evolution then favors those individuals who

are adapted in both senses, i.e. adapted to the correct distribution of con-

sumption levels for the two arms of the bandit, as they must be given the

model, as well as adapted to the correct link between consumption levels and

expected number of offspring. Thus evolution in Robson (2001a)’s model fa-

vors individuals who behave “as if” they are expected utility maximizers with

the correct utility function.

The additional insight our paper provides is to demonstrate the evolu-

tionary value of being “rational” even when not perfectly adapted. We could

have studied the question of the evolutionary value of “rationality” in Robson

(2001a)’s model. In order to find analogue results to ours in Robson (2001a)’s

model, we would have to investigate the (possible) evolutionary advantage

of being an expected utility maximizer without having correct beliefs, i.e.

we would compare individuals who just follow some rule of thumb with in-

dividuals who have a consistent theory in their mind about the link between

consumption levels and expected number of offspring. In order to see the

exact advantage of “rationality” even without perfect “adaptedness” more

clearly we chose to study the more basic problem of consumer choice, i.e.

without uncertainty, which we also find of interest in its own right. We con-

jecture, though, that similar results to ours can be shown in Robson (2001a)’s

context of decision making under uncertainty, i.e. that being rational even

without perhaps ever being adapted is strongly favored by evolution over

those who are not rational, where rational is in the sense of revealed pref-

erences. In fact we consider our results, while of interest in its own right

35



as they pertain to consumer choice, also to be a metaphor to illustrate the

general evolutionary advantage of consistent behavior according to some true

regularity properties about the world the individual lives in. Whatever these

regularities are, populations using rules of behavior that are suited to this

property have an evolutionary edge over those who do not.

Many other well-known models of evolution do not directly allow the

discussion whether or not evolution favors actual rationality over “as if” ra-

tionality. For instance the literature on the evolution of preferences in games,

based on the indirect evolutionary approach of Güth and Yaari (1992) and

Güth (1995), perhaps culminating in Dekel, Ely, and Yilankaya (2007), as-

sumes that individuals always hold consistent preferences, even if not nec-

essarily the correct ones. I.e. these individuals are all rational, perhaps not

adapted. Most of evolutionary game theory also does not allow the dis-

tinction between rational and “as if” rational. Typically (see e.g. Weibull

(1995) for a textbook treatment of evolutionary game theory) individuals

are programmed to play certain strategies and just may or may not even-

tually disappear. The evolutionary models which share these characteristics

and, hence, for which the discussion below applies, includes static concepts of

evolutionary stability such as the concept of an evolutionary stable strategy

(ESS) of Maynard Smith and Price (1973), deterministic dynamic models of

evolution such as the replicator dynamics of Taylor and Jonker (1978), as

well as stochastic models such as that of Kandori, Mailath, and Rob (1993).

If such an evolutionary process leads to a convergence point of its dynam-

ics or an in some sense stable outcome, which then typically constitutes a

Nash equilibrium, it looks “as if” individuals are rational. In fact this comes

with the added implication that also their beliefs about nature as well as

about their opponents are perfectly correct, i.e. they are adapted. Again

they appear “as if” they are rational as well as “as if” they know the en-

vironment they live and act in, while they are not actually rational, being

simply programmed to their strategy choice.
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Interesting exceptions to this literature are the models of Dekel and

Scotchmer (1992) and Banerjee and Weibull (1995). In addition to the above-

mentioned programmed individuals playing the game, Dekel and Scotchmer

(1992) allow for individuals who are programmed to rules, such as the rule

“play a best response to the previous period’s population”, while Banerjee

and Weibull (1995) allow individuals of a type, termed homo oeconomicus,

who, when called upon to play, always knows either the exact behavior of its

opponent or at least the correct distribution of behaviors and plays a best re-

sponse to its information. In either case one could call these additional types

more rational than the programmed ones. Yet, the notion of rationality in

both Dekel and Scotchmer (1992) and Banerjee and Weibull (1995) is obvi-

ously somewhat different than that in our paper as theirs pertains mostly to

acting on beliefs about (or knowledge of) opponent behavior. Thus also the

results are different. Both Dekel and Scotchmer (1992) as well as Banerjee

and Weibull (1995) show that, while such rational individuals typically sur-

vive evolution, also programmed individuals can survive evolution for a wide

class of games.

A lack of adaptedness is also central in Samuelson and Swinkels (2006)

and Ely (2007). In Samuelson and Swinkels (2006), in a model close to

Robson (2001a), nature is restricted in that she is not able to endow agents

with the correct information-processing. Thus individuals, by assumption

cannot be completely adapted to their environment. Samuelson and Swinkels

(2006) show how nature then makes up for this inability by attaching utility

to, fitness-irrelevant, intermediate actions. The resulting utility then has

some interesting features such as choice-set dependence and its induced self-

control problems. Ely (2007) provides a natural model, in which agents

with positive probability never achieve perfect adaptation, even though the

environment is, in essence, fixed. The present paper demonstrates the value

of consistency, a vital part of rationality, especially in cases where individuals

can never hope to be perfectly adapted to the world they live in.
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Finally, while Campbell (1978) argues that rational choice functions are

easy to compute, Kalai (2003) that they are easy to learn, Rubinstein (1996)

that they are easy to describe, and Salant (2007) that they are procedurally

simple, this paper argues that rational choice functions are likely to survive,

i.e. have a strong evolutionary appeal.

9 Conclusion

In this paper we study a possible foundation of a crucial aspect of rationality

(consistency in choice behavior) based on evolutionary selection arguments.

Put simply, the questions we address are the following. 1) Would a “gene of

rationality” provide an evolutionary advantage to a population of individuals

who carry it, 2) which environmental conditions are the most favorable to the

emergence of such a gene, and 3) how strong is this evolutionary advantage

if there is one?

In a model in which different populations of individuals differ in the way

they experiment when trying new rules of behavior, the answer to the first

question is positive. The Rational Dominance Theorem demonstrates that

any sampling distribution individuals use can be replaced by a sampling

distribution over strictly rational rules with no loss in fitness to these indi-

viduals. The Universal Rational Dominance Theorem, furthermore, shows

that uniform sampling over strictly rational rules does at least as well as

any sampling distribution for which no particular choice plays a special role.

Moreover, in both cases, the strictly rational population performs strictly

better than the other under mild conditions on the environment. This strict

superiority in fitness of the strictly rational population is present at every

generation, both if the environment is constant over time (Theorem 1) and

when the environment changes (Theorem 4).

To answer the second question, we find that this form of rationality has a

particular advantage if there is sufficient variability on the side of the environ-
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ment. Indeed, if the environment is very stable, and there is sufficient time

for the evolutionary processes to reach convergence, then in the ultra-long

run, both “rational” and “non-rational” populations achieve perfect adapta-

tion and, thus, behavior that seems rational. Is is worth noting, however,

that in this case the time to perfect adaptation is much smaller for the ra-

tional population than for the non-rational one (see Theorem 3, Proposition

2 and Section A). For a very large range of parameters between (not includ-

ing) complete instability and (including) complete instability, the advantage

of rationality is quite substantial, which thus leads us to our answer to the

third question.

The rational population reaches a significant degree of adaptation (al-

though not necessarily perfect) in any finite number of generations larger

than one, independently of the complexity of the environment (see Propo-

sition 4). This contrasts sharply with the non-rational population, whose

degree of adaptation stays desperately close to none for a large number of

generations up to a point in time, which is a double exponential in the number

of alternatives. Thus the rational population has a very strong evolutionary

advantage over the non-rational one for a very large range of parameters.

Our findings are consistent with evidence from anthropology and cogni-

tive sciences. Richerson, Bettinger, and Boyd (2005) show that periods of

higher variability of the environment are closely followed by higher degrees of

adaptation of cognitive skills of early humanoids. They argue that advanced

cognitive skills permit social learning, and that this form of learning is suited

for rapid adaptation (of the order of a few dozen generations), which is much

faster than biological adaptation (of the order of 100,000 years). Another

important advantage of highly developed cognitive skills is that they may be

suited for the implementation of rational rules. In view of our results, social

learning may permit fast selection of better suited rules in the population,

but this fast selection alone is insufficient if sampling is done over the set

of non-rational rules. But if both rationality and social learning are signif-
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icantly enhanced by higher cognitive skills, they, in fact, complement each

other in order to achieve fast adaptation in a changing environment.

Egan, Santos, and Bloom (2007) study sequential choices among alter-

natives by four year-old children and capuchin monkeys. The experiments

are designed in such a way that the subjects are a priori indifferent between

all alternatives. Yet, observed behavior is compatible with strictly rational

choice rules, but allow to reject the hypothesis that all rational choice rules

may be used (see also Chen (2008)). It is quite striking that subjects seem to

“break indifferences” between alternatives they are initially indifferent from.

Such a propensity to break indifferences between any pair of alternatives is,

in fact, one of the implications of this paper. We show that strictly rational

rules perform better than merely rational rules, even when the environment

exhibits indifferences.

A final caveat is in order. Even though our results argue in favor of

rational behavior, we do not predict individuals to always make the correct

choices. The sense in which we understand rationality here is that it is a form

of regularity, or consistency, of the agent’s behavior. In the particular case

of the choice between alternatives we are interested in, this regularity takes

the form of the weak axiom of revealed preferences and of single choices,

equivalently represented by a strict preference relation. We do not make the

case, however, that an agent’s preference should always be the best suited

given the environment the agent lives in. Quite on the contrary, we show that

a population may never reach perfect adaptation if the environment is not

extremely stable over time. In other words, our results are not inconsistent

with empirical findings that agents may make choices that are not in their

best self-interest.

What we offer is a reinterpretation of the source of maladaptation of

choices to the environment as coming from a difficulty in reaching perfect

adaptation when the agent is confronted with new situations, rather than

from a lack of rationality per se on the agent’s side. Looking at deviations of
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Homo Economicus from the classical paradigm of optimal decision making in

view of this new light (i.e. while maintaining some consistency assumptions

on the agents’ part) might provide fruitful directions of future research.

A On the number of rules

To facilitate a more detailed comparison of the time to full adaptation for

some sets of rules we here count the number of rules in each of these sets.

The number of rules are given in the following table for the set of all rules

R, the set of all singleton-value rules Rf , the set of all rational rules Rr, and

the set of all strictly rational rules Rs.

R Rf Rr Rs

Π
L∈L(2|L| − 1)

= Πk−1
l=0

(

2k−l − 1
)(k

l)
Π

L∈L|L|

= Πk−1
l=0 (k − l)(

k

l)
∈ [k!, (k!)2k−1] k!

In addition, we have |Ro| = kΠ
L∈L;j 6∈L

(

2|L| − 1
)

for any fixed j ∈ K, and

|Rp| = kΠ
L∈L;j 6∈L

(

2|L| − 1
)

Π
L∈L;j∈L

(

2|L|−1 − 1
)

, or alternatively, |Ro| =

kΠk−2
l=0

(

2k−1−l − 1
)(k−1

l )
and |Rp| = k

[

Πk−2
l=0

(

2k−1−l − 1
)(k−1

l )
]2

. For k = 3

and k = 4, for instance, we have

R Rf Rr Rs Ro Rp

k = 3 189 24 19 ∈ [6, 24] 6 9 27

k = 4 26245935 20736 ∈ [24, 192] 24 756 142884.

B Mean Preserving Spreads

Let X,Y be random variables with supports included in the finite sets X and

Y respectively, subsets of IR or IRn. Recall that X is a mean preserving

spread of Y if there exists a collection of vectors of weights α = {αy}y∈Y

with αy ∈ ∆(X ) such that
∑

x αy(x)x = y for every y ∈ Y and such that
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P (X = x) =
∑

y∈Y P (Y = y)αy(x). If furthermore there exists y such that

P (Y = y) > 0 and αy does not put probability 1 on y, we say that X is

a strict mean preserving spread of Y . Equivalently, X is a strict mean

preserving spread of Y if and only if it is a mean preserving spread of Y and

the distributions of X,Y differ.

Note that in creating X as a mean preserving spread of Y , we are “re-

placing” each y in the support of Y with a distribution over x’s, such that its

mean is exactly y. Alternatively one could say that we are “splitting” y into

a distribution over x’s, leaving the mean the same. We return to “splittings”

in Appendix C. Since mean preserving spreads depend on random variables

only through their distributions, we also say that the distribution of X is a

(strict) mean preserving spread of the distribution of Y .

Proposition 6 Let X,Y, Z be real valued random variables with finite sup-

port such that X is a mean preserving spread of Y , and let Z is independent

of X and of Y . Then

IE max(X,Z) ≥ IE max(Y, Z)

Furthermore, the inequality is strict if X is a strict mean preserving spread

of Y and the support of Z contains the support of Y .

Proof: For each pair of values y, z, Jensen’s inequality implies that
∑

x αy(x) max(x, z) ≥

max(y, z) with strict inequality if αy does not put probability 1 on y and

z = y (as the mapping y 7→ max(y, z) is strictly convex at the point y = z).

Summing over all values of Y , multiplying each inequality by P (Y = y)

yields IE max(X, z) ≥ IE max(Y, z) with strict inequality if P (Y = z) > 0

and αz(z) < 1. Now multiplying each inequality by P (Z = z) and summing

over values of z gives the result. QED

Proposition 7 Let (Xi)i=1,...,n and (Yi)i=1,...,n be two families of independent

random variables such that for each i = 1, ..., n let Xi be a mean preserving-
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spread of Yi. Then

IE max(X1, X2, ..., Xn) ≥ IE max(Y1, Y2, ..., Yn).

The inequality is strict if at least one of the mean preserving spreads is strict

and Y1, . . . , Yn have same support.

Proof: Assume (Xi) and (Yi) are independent. For k ∈ {1, . . . , n}, Lemma 6

gives the inequality

IE max(X1, . . . .Xk, Yk+1, . . . , Yn) = IE max(Xk, max(X1, ..., Xk−1, Yk+1, Yn))

≥ IE max(Yk, max(X1, ..., Xk−1, Yk+1, Yn))

= IE max(X1, . . . .Xk−1, Yk, . . . , Yn)

If Y1, . . . , Yn all have the same support then max(X1, ..., Xk−1, Yk+1, Yn) also

has this support (the minimum of the support of Xi is no larger than the

minimum of the support of Yi), so that, if Xi is a strict mean preserving

spread of Yi, the above inequality is strict by the “strict” part of Lemma 6.

The result then follows from a finite chain of such inequalities. QED

C Proofs of Results in Section 3

C.1 Proof of Lemma 1

By definition

IEqŨ
q =

∑

R∈R

q(R)U(R) =
∑

R∈R

q(R)IEpu(R(L)).

Changing the order of summation we have

IEqŨ
q = IEp

∑

R∈R

q(R)u(R(L)).
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For any choice set L and any permutation π of K, the symmetry of q implies

∑

R∈R

q(R)u(R(L)) =
∑

R∈R

q(R)u(π(R(L))).

By averaging the above equality on all permutations π, we deduce that

∑

R∈R

q(R)u(R(L)) =
∑

R∈R

q(R)
∑

π∈Π

1

|Π|
u(R(π(L)))

=
∑

R∈R

q(R)u(L)

= u(L),

and, hence, the result. QED

C.2 Proof of Lemmata 2 and 3

Proof of Lemma 2: It is enough to prove that, for any vector v = (v(k))k ∈

IRK , maxλp∈Λp

∑

k λp(k)v(k) is attained for some λp ∈ Λs
p. Interpret v(k)

as a “utility” for the choice k. For L ⊆ K, let v(L) = 1
|L|

∑

l∈L v(l).

Let π be a permutation of K that orders the coordinates of v such that

v(π(1)) ≥ v(π(2)) ≥ . . . ≥ v(π(k)). Maximizing
∑

k λp(k)v(k) over λp ∈ Λp

is equivalent to maximizing the expected “utility”
∑

L∈L p(L)v(R(L)) over

all rules.

The rule Rπ that selects the least element according to π in every choice

set, R(L) = min{l, π(l) ∈ L}, maximizes each term of the sum
∑

L∈L p(L)v(R(L)),

so it maximizes the sum. Also, Rπ is strictly rational, since it is the rule that

corresponds to the preference relation π(1) ≻ π(2) ≻ . . . ≻ π(k). Hence,

λp(R
π) belongs to Λs

p, and achieves maxλp∈Λp

∑

k λp(k)vk. QED

Proof of Lemma 3: Lemma 2 implies that for any R ∈ R there exist

non-negative coefficients {αR,Rs}
Rs∈Rs summing to 1 such that λp(R) =

∑

Rs αR,Rsλp(R
s). Let q′ be the distribution over Rs defined by q′(Rs) =
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∑

R αR,Rsq(R). It follows by construction that the distribution of λp = λp(R)

under q′ is a mean preserving spread of the distribution of λp under q. The

result follows, since for any u, the application that associates to a choice

distribution λp the corresponding sampling fitness
∑

k∈K λp(k)u(k) is linear.

QED

C.3 Proof of Lemma 4

As in the proof of Lemma 3, it suffices to prove that the distribution of λp

under qs is a mean preserving spread of the distribution of λp under q. Recall

that, with q′(Rs) =
∑

R αR,Rsq(R), the distribution of λp under q′ is a mean

preserving spread of the distribution of λp under q. For any permutation π of

K, with q′π(Rs) =
∑

R αRπ ,Rsπq(Rπ) =
∑

R αRπ ,Rsπq(R), the distribution of

λp under q′π is also a mean preserving spread of the distribution of λp under

q. Hence, with q′′ = 1
|Π|

∑

π q′π, the distribution of λp under q′′ is, again, a

mean preserving spread of the distribution of λp under q. We now complete

the proof by showing that q′′ = qs, and for this, it is enough to show that q′′

is symmetric. Indeed, for every permutation π′,

q′′(Rs,π′

) =
1

|Π|

∑

R

(

∑

π

αRππ′
Rsπ′

)

q(R) =
1

|Π|

∑

R

(

∑

π

αRπRs

)

q(R) = q′′(Rs).

QED

C.4 Proofs of Lemmata 5 and 6

We here identify conditions under which for some sampling distribution q,

there is another distribution q′ with q′(Rs) = 1 such that, not only is the

distribution of Ũ q′ a mean preserving spread of Ũ q, but also these two dis-

tributions are not identical. This means that the mean preserving spread is

strict.
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Note that the distribution q′ as in Lemma 3 is not necessarily unique.

The mean preserving spread may be strict for some q′, but not for some

other q′. In order to tackle this issue, we look for mean preserving spreads

with “maximal” support, in the sense that each rule R with q(R) > 0 is

itself “split” (as in the construction of the proof of Lemma 3) into a maximal

subset of Rs.

There are two main reasons why, for a given sampling distribution q, we

might not be able to construct a strict mean-preserving spread of it.

First, there might be a rule R ∈ R such that for all αR,Rs , summing to

one, with λp(R) =
∑

Rs∈Rs αR,Rsλp(R
s) we have that λp(R

s) = λp(R) for

all Rs with αR,Rs > 0. Thus all replacements of R with rules in Rs, which

induce the same expected choice distribution, are such that all rules used in

the replacement induce the exact same choice distribution. But then they all

induce the same fitness. This is for example the case when the distribution

p over choice sets puts probability only on singleton choice sets.

Second, even if, for every rule R ∈ R\Rs we can find a replacement that

is composed of strictly rational rules inducing different choice distributions,

we might still find a rule R ∈ R such that for all such replacements, i.e. for

all αR,Rs collections, summing to one, with λp(R) =
∑

Rs∈Rs αR,Rsλp(R
s) we

have that λp(R
s) 6= λp(R) for some Rs with αR,Rs > 0 and, yet, U(Rs) =

U(R) for all Rs with αR,Rs > 0. This is for example the case when the fitness

function u is a constant function.

To guarantee that for every sampling distribution q with q(Rs) < 1 there

is a strict mean preserving spread q′ with q′(Rs) = 1 we thus need simul-

taneous conditions on the distribution over choice sets, p, as well as on the

fitness function, u.

Fixing p, for a given rule R, a collection of weights α = {αRs}
Rs∈Rs is a

splitting of R (or of λp(R)) if αRs ≥ 0 for all Rs ∈ Rs,
∑

Rs αRs = 1, and
∑

Rs αRsλp(R
s) = λp(R). Splittings form a convex set. If α, α′ are splittings,

so is any convex combination of α and α′. Hence, there exists a splitting
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R with maximal support. Its support includes the support of any other

splitting. Let this maximal support be denoted by S(R) and, thus, given by

S(R) = {Rs ∈ Rs,∃ splitting α such that αRs > 0}. The maximal support,

S(R), of splittings of a rule R has a useful geometric characterization.

Lemma 9 For every p and R, there exists a vector v : K → IR such that

S(R) is the set of maximizers of
∑

k v(k)λp(R
s)(k) over Rs ∈ Rs.

Proof: Consider the minimal face F containing λp(R) in the convex poly-

hedron whose vertices are the elements of Λs
p, i.e. in the convex hull of Λs

p.

The maximal support for a splitting of λp(R) is F ∩Λs
p. This support hence

consists of the points of Λs
p that maximize some linear functional. QED

Note that for a rule R with a choice distribution λp(R) that is in the strict

interior of the convex hull of Λs
p the minimal face, in the proof of Lemma 9,

is the whole convex polyhedron. Thus, the vector v must be constant in this

case.

For any q, q′, let, abusing notation slightly, a collection of weights α =

{αR,Rs}R,Rs be a splitting of q into q′ if each sub-collection (αR,Rs)Rs is a

splitting of each R and for every Rs, q′(Rs) =
∑

R αR,Rsq(R). A splitting

of q into q′ has maximal support if each (αR,Rs)Rs is a splitting of R with

maximal support.

Given p and a fitness function u, the following characterizes splittings

that induce strict mean preserving spreads in fitness. Recall that given a

distribution q, Ũ q denotes the random variable U(R), where R ∼ q.

Lemma 10 Let α be a splitting of q into q′. The distribution of Ũ q′ is a

strict mean preserving spread of the distribution of Ũ q if and only if there

exists R,Rs with q(R)αR,Rs > 0 and U(R) 6= U(Rs).

Proof: To prove the “if” part, suppose that there exists R,Rs with q(R)αR,Rs >

0 and U(R) 6= U(Rs). Thus this R can be replaced by a strict mean pre-

serving spread. Also all other rules R′ such that q(R′) > 0 can be replaced
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by “weak” mean preserving spreads. Hence, Ũ q′ is a strict mean preserving

spread of the distribution of Ũ q by integration over the support of q. To

prove the “only if” part, note that U(R) = U(Rs) whenever q(R)αR,Rs > 0

immediately implies that the distributions Ũ q and Ũ q′ are the same. QED

Lemma 11 Assume that p has full support and u is discriminatory. Then

for every R 6∈ Rs there exists Rs ∈ S(R) such that U(R) 6= U(Rs).

Proof: Let v be as in Lemma 9. If v is injective, since p has full support,

there is only one rule R′ achieving the maximum of
∑

k v(k)λp(R
′)(k), so

that S(R) = {R} and thus R ∈ Rs, a contradiction. Assume then wlog that

v(1) ≥ . . . ≥ v(k) = v(k + 1) ≥ . . . ≥ v(K) for some k ≥ 1. Then S(R)

contains both rules R′ and R′′ corresponding to the preference orders 1 ≻

. . . ≻ k−1 ≻ k ≻ k+1 ≻ k+2 ≻ . . . ≻ K and 1 ≻ . . . ≻ k−1 ≻ k+1 ≻ k ≻

k +2 ≻ . . . ≻ K respectively. But then, λp(R)(i) = λp(R
′)(i) for i 6= k, k +1.

From this fact and the fact that
∑

l λp(R)(l) = 1 implying
∑

l λp(R)(l) =
∑

l λp(R
′)(l) we obtain λp(R)(k) + λp(k1) = λp(R

′)(k) + λ(R′)(k + 1), and,

hence,

λp(R)(k) − λp(R
′)(k) = λp(R

′)(k + 1) − λp(R)(k + 1).

Note that λp(R)(k) − λp(R
′)(k) is given by the sum of p(L) over all L ∈ L

with k, k + 1 ∈ L and k = min{L}. Thus λp(R)(k) − λp(R
′)(k) > 0 since p

has full support. This implies U(R′) 6= U(R′′) since u, being discriminatory,

satisfies u(k) 6= u(k + 1). QED

Lemma 12 Assume that p has full support and u is non constant. For the

zero rule R0, there exists Rs ∈ S(R0) such that U(R0) 6= U(Rs).

Proof: Let v define S(R0) as in Lemma 9. Since R0 maximizes
∑

k λp(R)(k)v(k),

and p has full support, v must be constant. Hence S(R0) = Λs
p. Now, if

U(R0) = U(Rs) for all Rs, u must be constant, a contradiction. QED
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Lemma 13 Assume p is neutral and has full support, q is symmetric with

q(Rs) < 1, and u is non-constant. Then there exists R ∈ R with q(R) > 0

and Rs ∈ S(R) such that U(R) 6= U(Rs).

Proof: Let R 6∈ Rs such that q(R) > 0, and let v define S(R) as in Lemma

9. Since R 6∈ Rs and p has full support, v must admit a tie. I.e. there exist

i, j such that v(i) = v(j). Supposing U(Rs) = U(R) for all Rs ∈ S(R) we

deduce that u(i) = u(j). Now, consider any permutation π : K → K. By

the symmetry of q we must have q(Rπ) = q(R) > 0. By the neutrality of

p, though, the set of convex combinations of strictly rational rules giving

rise to U(Rπ) must be symmetric to the set of convex combinations, above,

giving rise to U(R). But then by the symmetric argument we must have

u(π(i)) = u(π(l)). As the choice of π is arbitrary we thus obtain that u must

be constant, a contradiction. QED

Proof of Lemma 5: Fixing p and q, let α be a splitting of q into some q′

with maximal support. Assume i) u is discriminatory and p has full support

and q(Rs) < 1. For R 6∈ Rs, by Lemma 11 there exists Rs ∈ Rs such that

the pair R,Rs satisfies the conditions of Lemma 10, hence Ũ q′ is a strict

mean preserving spread of Ũ q. Now if ii) p, q have full support and u is

non-constant, by Lemma 12 there exists Rs ∈ Rs such that the pair R0, Rs

satisfies the conditions of Lemma 10, hence the result. QED

Proof of Lemma 6: Let p be neutral, q be symmetric, and α be a splitting

of q with maximal support into some q′. The splitting constructed in the

proof of Lemma 4 using all permutations of α has a support that includes

that of α, hence it is also maximal. Thus, we have a splitting α′ with maximal

support of q into qs, the uniform distribution over Rs. Choosing R 6∈ Rs

such that q(R) > 0, Lemma 13 shows there exists Rs ∈ Rs such that R,Rs

satisfies the conditions of Lemma 10 for α′, hence the result. QED
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