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THEMA, Université Paris Nanterre
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Abstract:

It is not true that the value of information is positive in economic situations,
as shown for instance by the Hirshleifer (1971) paradoxes. Recall the following
example of information rejection, which is a variant of the example provided by
Kamien, Tauman and Zamir (1986). A card in a deck can be white or black,
with equal probabilities. Two players, player 1 and 2 are sequentially asked to
guess the color of the card. A player gets a payoff of 6 if he/she is the only one
to guess right, both players get a value of 2 if both guess right, and a player
guessing wrong gets 0. Assume that no player knows the color of the card, then
1 announces a color, and 2’s best response is to announce the other color. Both
players get an expected payoff of 3. Now, assume that player 1 gets to see the
card before making his/her announcement (and player 2 sees that player 1 sees
it). Then, player 1’s dominant strategy is to announce the true color, and player
2 is better off making the same announcement as 1: both players get a payoff
of 2.

For one agent, the value of information is known to be positive: more infor-
mation is always better. Actually, Blackwell’s theorem (1951, 1953) says more
than this. Blackwell defines two notions of comparison of statistical experiments.
Payoff-wise, a statistical experiment is better than another one if and only if it
yields a better payoff in every decision problem. Information-wise, a statistical
experiment is more informative than another one if and only if the informa-
tion of the latter can be obtained by garbling the information of the former.
Blackwell’s theorem establishes the equivalence between the two notions.

Zero-sum games represent perfectly antagonistic situations between two play-
ers, 1 and 2. The payoff received by player 1 is paid to him/her by player 2.
This class of games are important for a number of reasons. They were the
first class of games studied by von-Neumann and Morgenstern (1944). They
used zero-sum games as a basis in their study of general non-zero-sum games.
In fact, many results in the zero-sum theory are useful for the non-zero-sum
theory: think of the characterization of punishment levels in repeated games,
or the existence of equilibrium payoffs in stochastic games, or Nash threats or
disagreement levels in bargaining theory. Zero-sum games present some nice
properties that give hope for existence for results à la Blackwell: First, since a
zero-sum game admits at most one Nash payoff, one avoids to compare the value
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of sets of equilibrium payoffs. Second –as we shall see– the value of information
is positive for those games.

A zero-sum game is described by a action set Si for each player i ∈ {1, 2},
and by a payoff function g : S1 × S2 → R ; g(s1, s2) is the payoff to player 1,
and the payoff to player 2 is −g(s1, s2). By playing t1 in S1, player 1 guarantees
infs2 g(t1, s2), thus player 1 can guarantee v = sups1

infs2 g(s1, s2) by choosing
appropriately t1. Similarly, player 2 can guarantee that player 1 will gain no
more than w = infs2 sups1

g(s1, s2). The most remarkable result for zero-sum
games is known as the minmax theorem, and asserts that under fairly general
conditions, v = w. The corresponding value is then called the value of the
game G, and we shall denote it V (G). In particular, the min max theorem is
true when S1 and S2 are mixed strategy sets over finite strategy sets. A simple
consequence of the min max theorem is that all Nash payoffs must be equal to
V (G). In fact, since player 1 can guarantee V (G) all Nash payoffs must be at
least V (G), and on the other side, player 2 can always force player 1 down to
V (G).

We now turn to the description of information structures. An information
structure E = ((Ω,A, P ),A1,A2, κ) is given by:

• A probability space of states of the world (Ω,A, P ),

• A sub-sigma algebraAi ⊆ A for each player i that describes i’s information
on ω.

• A mapping κ from (Ω,A) to a set K that describes the payoff relevant
state.

Given an information structure E = ((Ω,A, P ),A1,A2, κ), strategy sets S1

and S2 for 1 and 2, and a payoff function g : S1 × S2 × K → R (payoffs now
depend also on k), the Bayesian game Γ(E, G) is the extended game in which
1) ω is picked in Ω according to P
2) i is informed of the elements of Ai containing ω
3) i chooses si ∈ Si

4) the payoff to 1 is g(s1, s2, k)
A strategy for i in Γ(E, g) is σi: (Ω,Ai) → Si

The corresponding expected payoff to player 1 is

γ(σ1, σ2) = EP g(σ1(ω), σ2(ω), κ(ω))

The value of Γ(E, g) is denoted by V (E, g).

A simple relation between information structure stems from comparison in
payoffs: we say that E is better than F for player 1 if for every game G,
V (E, g) ≥ V (F, g). E is then preferable to F for player 1 in every zero-sum
game. We note this relation E ≥V F. The corresponding equivalence relation
holds when V (E, g) = V (F, g) for every g, we then write E ∼=V F. We address
the question of how to characterize these relations in terms of the information
of the players in E and F.
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We say that player 1’s information is finer in E than in F, and we note
E ≥1 F when E = ((Ω,A, P ),A1,A2, κ), F = ((Ω,A, P ),B1,A2, κ), with
B1 ⊆ A1. Similarly, we note E ≥2 F if E = ((Ω,A, P ),A1,A2, κ), F =
((Ω,A, P ),A1,B2, κ), with A2 ⊆ B2.

A simple property, that establishes that value of information is positive in
zero-sum games, is the following:

Proposition 1 Assume E ≥1 F or E ≥2 F, then E ≥V F.

The proof of the above proposition is simple. Just notice that if E ≥1 F,
player 1 has more strategies in Γ(E,g) than in Γ(F,g), and that if E ≥2 F, player
2 has less strategies in Γ(E,g) than in Γ(F,g). The minmax is then increased
either if the max is taken over a larger set, or if the min is taken over a smaller
set.

We define a second way of comparing information structures with respect to
information as follows. Let us write E ∼=1 F whenever E = ((Ω,A, P ),A1,A2, κ),
F = ((Ω,A, P ),B1,A2, κ), and B1 ⊆ A1 is a sufficient statistic for A1 on (A2, k).
In this case, B1 is as informative on (A2, k) as A1. E ∼=2 F is defined similarly.

According to the next proposition, sufficient statistics do not affect values.

Proposition 2 Assume E ∼=1 F or E ∼=2 F, then E ∼=V F.

To prove this, assume E = ((Ω,A, P ),A1,A2, κ), and B1 ⊆ A1 is a sufficient
statistic for A1 on (A2, k). We show that 2 cannot guarantee more in Γ(E, g)
than in Γ(F, g). Indeed, for every strategy σ2 of player 2 in Γ(E, g), player
1 has a best response in Γ(E, g) which is B1 measurable. This last property
comes from the fact that for one-person decision problems, the optimal action
depends on the belief on the state of nature only. Here, the relevant information
to player 1 is the belief held on k and s2, which depends (given σ2) on the belief
held on k and A2 only.

Using the previously defined relations, we denote E ≥I F when there exists
a sequence E0,E1, . . . ,En such that E0 = E, En = F, and for every k, one
of the following holds: Ek ≥1 Ek+1, Ek ≥2 Ek+1, Ek

∼=1 Ek+1, Ek+1
∼=1 Ek,

Ek
∼=2 Ek+1, or Ek+1

∼=2 Ek. We note E ∼=I F when both E ≥I F and F ≥I E.
It comes as an immediate corollary of the above propositions that E ≥I F
implies E ≥V F. Our main result is the following:

Theorem 3 E ∼=V F if and only if E ∼=I F.

We establish this by proving that, if E ∼=V F, then the relevant information
to the players in E and in F is essentially the same. It remains to give a precise
meaning to the previous statement. We present here very informally the ideas
underlying the proof. First, we can establish the following lemma:

Lemma 4 If E ∼=V F, then the information of player 1 on k in E and in F are
the same.
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This can be proved using games in which the payoff depends on k and on
player 1’s action – in such games, player 2 is “dummy” and player 1 is asked to
place a bet on the realized k. The result then comes from Blackwell’s Theorem:
both statistical experiments representing 1’s information on k are equivalent in
payoffs, therefore they are equivalent in information.

Then, one may prove:

Lemma 5 If E ∼=V F, then the information of player 2 on the information of
1 on k in E and in F are the same.

The idea of the proof is as this: Perturb the games in which player 1 bets
on k by games in which player 2 bets on player 1’s action. Player 1’s strategies
are little perturbed if the perturbation of payoffs is small, and player 2 having
the same information on player 1’s actions in E and in F must have the same
information on 1’s information on k.

Now, recall informally that the canonical information structure (Mertens
and Zamir 86) associated to E is constituted of: player’s information on k in E,
player’s information on other player’s information on k in E, player’s information
on ... ... on player’s information on k in E, at all levels. A generalization of
the logic of the above lemmata is: If E ∼=V F, player’s information on k is the
same, and can be extracted from player’s actions in suitably designed games
– we express this by saying that this information is required to play in those
games.

Also, if a player’s – say 1– information is required to play in some game, then
there exists a game in which player 2’s information on the required information
of player 1 is also required. This way, we prove the existence of games in which
all the canonical information is required. This in turn implies that if E ∼=V F,
then E and F have the same canonical information structure associated.

To finish the proof of our theorem, it remains to see that if E and F have the
same canonical information structure associated, then E ∼=I F. It is sufficient
for this to prove that if C is the canonical information structure associated to
E, then E ∼=I C – the relation ∼=I being both reflexive and transitive. This can
be done using properties of canonical information structures that can be found
in chapter III of the book of Mertens, Sorin and Zamir (1994).

Our main result establishes the identity of equivalence classes for the two
relations ≥I and ≥V . This does not suffice to establish the equivalence of both
relations and we conclude by an open question: do the two relations coincide?
Namely, is it true that E ≥V F implies E ≥I F?
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