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ON THE CONSEQUENCES OF BEHAVIORAL
ADAPTATIONS IN THE COST–BENEFIT
ANALYSIS OF ROAD SAFETY MEASURES
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ABSTRACT

It is sometimes argued that road safety measures or automobile safety stan-
dards fail to save lives because safer highways or safer cars induce more
dangerous driving. A similar but less extreme view is that ignoring the be-
havioral adaptation of drivers would bias the cost–benefit analysis of a traffic
safety measure. This article derives cost–benefit rules for automobile safety
regulation when drivers may adapt their risk-taking behavior in response
to changes in the quality of the road network. The focus is on the finan-
cial externalities induced by accidents because of the insurance system as
well as on the consequences of drivers’ risk aversion. We establish that road
safety measures are Pareto improving if their monetary cost is lower than
the difference between their (adjusted for risk aversion) direct welfare gain
with unchanged behavior and the induced variation in insured losses due to
drivers’ behavioral adaptation. The article also shows how this rule can be
extended to take other accident external costs into account.

INTRODUCTION

Behavioral adaptations of drivers to safety measures is a well-documented phe-
nomenon; see OECD (1990). Following changes in the road–vehicle system affecting
either highways safety or vehicle safety, road users sometimes adapt their behavior
in a manner inconsistent with the initial goals of the safety measures: indeed, safer
highways and safer cars often induce more dangerous driving.1 Because of this be-
havioral adaptation, the decrease in accidents and fatalities may be lower than what
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1 See, for instance, the analysis of Peterson, Hoffer, and Millner (1995) on the behavior of drivers

of air-bag-equipped cars. They conclude that “air-bag-equipped cars tend to be driven more
aggressively than cars without air-bags and that the additional aggressiveness appears to
offset the effect of the air-bag for the driver and increases the risk of death to others.”
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was initially expected, and it may even fully vanish. In particular, using US data
(1947–1972), Peltzman (1975) claimed that such offsetting effects have been virtually
complete and that regulation has not decreased highway deaths. However, most stud-
ies lead to less clear-cut conclusions and they most frequently show that behavioral
adaptation only mitigates the initial impact of road safety measures and that these
measures still entail some residual effects.2

Behavioral adaptation to safety measures has been widely analyzed with the analyt-
ical tools of social psychology and cognition theory. In particular, Wilde (1982, 2001)
develops a theory of risk homeostasis according to which individuals are prepared to
accept a given target level of risk and he derives a number of implications for safety
and health. In Wilde’s theory, the dynamics of individual behavior results from a gap
between the perceived level of risk and an (exogenously given) target level of risk. This
gap follows from the fact that individuals have bounded perceptual skills. However,
if the risk-taking behavior by drivers is put within the framework of expected utility
maximization (for instance by speed choice), then risk homeostasis is possible only
under very restrictive conditions; see Janssen and Tenking (1988). Nevertheless, be-
havioral adaptations to changes in the road transport system is a much more general
phenomenon than risk homeostasis which is expected to hold under fairly general
conditions. The fact that compensation is partial or total (or even that there is over-
compensation) is a matter that can be settled on the basis of empirical observations
only. As summarized in the key conclusions of an OECD (1990) expert group report
“Behavioral adaptation (to changes in the road transport system) exists, and does
have an effect on the safety benefits achieved through road safety programs. Results
indicate that, generally, behavioral adaptation does not eliminate the safety gains ob-
tained, but it does reduce the effectiveness of road safety programs in a number of
cases.”

Given the empirical fact that drivers adapt their behavior to changes in their environ-
ment (particularly to road safety measures), an open question is how these behavioral
adaptations should be taken into account in the cost–benefit analysis of public in-
vestments and traffic regulation. In particular, behavioral adaptation may totally or
partially offset the safety gains of an investment transport program. These adapta-
tions may correspond to a welfare gain to individuals, for instance, when individuals
enjoy a more pleasant driving or chose a higher mileage, even if these side effects
were not the main goal of the program. So, one may actually wonder whether and
how to include these adaptations in the balance of costs and benefits of road safety
programs.

The following analysis will bring insurance-linked externalities into prominence. In-
deed, we must keep in mind that drivers are (at least partially) insured against the
losses they may cause when they are responsible for an accident. Reckless drivers
not only take a risk for themselves but, when they bring about an accident, they are
also the source of an externality to the detriment of all other drivers because of the

2 Graham and Garber (1984) critique the functional form of Peltzman’s model and, saying the
opposite of what Peltzman says, they argue that “safety standards have saved tens of thou-
sands of lives during the 1970s.” Later on, works by Chirunko and Harper (1993) and Keeler
(1994) have reinforced the empirical plausibility of the “offsetting behavior hypothesis.”
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insurance system. One may even say that the essence of insurance contracting under
moral hazard is to trade off the incentives for drivers to be more cautious in order to
reduce this detrimental external effect with the positive effect of a better risk sharing
between drivers. From our analysis, it emerges that the insurance mechanism is the
fundamental reason why behavioral adaptations should be taken into account by the
social planner: the social cost of these adaptations is nothing but the additional burden
imposed on the drivers as a whole by this insurance-linked externality.

Blomquist (1988, pp. 32-39) emphasizes the fact that individual demand for traffic
safety tends to be too low because of such insurance external effects, which include
“the potential shift of some medical costs to those not involved in an accident, . . . , the
lack of precise experience rating for automobile insurance and possibly incomplete
compensation for damaged parties through the courts especially when time costs and
death are involved.” He also draws attention to the fact that conventional cost–benefit
analysis assumes that drivers are passive toward road safety measure (for instance,
mandatory safety standards) and that they do not change their safety-related behavior.
He concludes that the assumption of driver’s passivity biases the conventional cost–
benefit studies toward positive net benefits of an active traffic safety policy. In what
follows, we will show that both issues (insurance external effects and behavioral
adaptation) are in fact tightly connected: forgetting the behavioral adaptations biases
the cost–benefit analysis in so far as the risk-taking behaviors by some drivers make
the other drivers incur additional insurance costs.

In order to develop such an analysis, we will insert the risk-taking behavior by drivers
within a simple one-good model of optimal resource allocation under uncertainty
with insurance coverage. This setting will allow us to identify the way in which
the conventional cost–benefit rules should be rectified because of drivers’ behavioral
adaptation. It will also highlight the effect of drivers’ risk aversion on the willingness
to pay for a traffic safety measure.

Finally, car crashes may entail additional costs incurred by other individuals than
those who are directly involved in the accidents, leading to a difference between the
private costs and the social costs of accidents. This difference may be substantial and
we will see how it interferes with the cost–benefit analysis of road safety measures.

From now on, two shortcomings of the present article should be acknowledged. First,
for the sake of clarity, we will only focus attention on the effect of road safety measures
on drivers’ risk-taking behavior. However, a road safety policy may also induce an
increase in the density of traffic and, in consequence, to additional congestion costs or
to an increase in average accident risk.3 In practice, a thorough cost–benefit analysis
should not overlook these externalities which take place through the effect of road
safety measures on traffic density. Secondly, we will only consider network-related
public expenditures, be they preventive (e.g., lane widening, line marking, lighting of
freeways, . . .) or protective (e.g., crash barriers). Vehicle safety will not be approached
although it is an essential part of many road safety policies. Our results can easily be
extended to the analysis of vehicle-related mandatory restraints (e.g., more restrictive

3 On the fact that the density of traffic affects average accident risk; see, for instance, Jansson
(1994) and Small and Gomez-Ibanez (1999).
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crash tests or more efficient antilocking systems) when drivers may adapt their risk-
taking behavior in reaction to changes in regulation.4

The article is organized as follows: The second section presents the basic model of
drivers’ behavior with accident risk. The third section develops the costs–benefits
analysis of road safety programs when drivers change their safety-related behavior
in reaction to changes in public investments. The last section concludes.

A MICROECONOMIC MODEL OF ACCIDENT RISK

In this section, we analyze a simple model of road users’ behavior. Assume that there
are n drivers, indexed by i = 1, . . . , n. A typical driver is treated as an expected utility
maximizer. The utility of driver i depends on final random wealth wf

i and effort ei. It
is written as

ui
(
w f

i , ei
)

with ∂ui/∂wf
i > 0, ∂2ui/∂w f 2

i < 0, ∂ui/∂ei < 0, ∂2ui/∂e2
i ≤ 0. Hence drivers are risk

averse with respect to wealth, they dislike effort and their marginal disutility of effort
is nondecreasing.5

This may be interpreted in two different ways. Effort may be nonmonetary (driving
cautiously) or monetary (buying a safer car). The principal-agent literature frequently
assumes that effort is nonmonetary and in that case, it is often postulated that utility
is separable in wealth and effort. If effort is directly measured by its disutility, we then
have

ui
(
w f

i , ei
) ≡ vi

(
w f

i

) − ei

with v′
i > 0, v′′

i < 0. Such a separability assumption makes the analysis easier, but we
may find it oversimplified. An increase in wealth may well make effort more painful
to the driver and in that case, we have ∂2ui/∂wf

i ∂ei < 0. This will be the case, for
example, when making more effort means abiding by the speed limits and the private
value of time is positively correlated with wealth.

When effort is monetary, we may identify ei with expenditures which gives

ui
(
w f

i , ei
) ≡ vi

(
w f

i − ei
)

with once again v′
i > 0, v′′

i < 0. We then have ∂2ui/∂wf
i ∂ei = −v′′

i > 0.

In the general case, the cross-derivative ∂2ui/∂wf
i ∂ei may thus be nil, positive, or

negative.

4 Such an extension can be obtained from the authors on request.
5 Utility is supposed to be state independent. In a state dependent approach—Dionne (1982)

and Arnott (1992)—the utility function would depend on whether an accident occurs or not.
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Let pi denote the probability of an accident caused by driver i. It depends on drivers
i’s effort ei and also on a parameter x that describes the safety of the road network.
Hence, we will write

pi = pi (ei , x)

with ∂ p/∂ei < 0, ∂2 p/∂e2
i > 0, and ∂ p/∂x < 0. Changes in x reflect the modifications

in the highways insofar as they affect the probability of accident for a given behavior
of the driver. For notational simplicity, we assume that all drivers are affected by the
same road transport system parameter x and that the relation between the probability
of an accident and the effort level is the same for all drivers. A preventive road safety
measure corresponds to an increase in x.

Let ỹi be the damages (in monetary terms) caused by driver i in the event of an
accident: ỹi is a random variable that corresponds to the total cost of an accident,
including damages inflicted on the other road users. For the time being, we assume that
accidents only entail private costs borne by the individuals involved in the crashes. We
will later extend our results to the more general case where accidents entail external
costs. For simplicity, we assume that the probability distribution of ỹi does not depend
on ei. In other words, the probability of an accident depends on the driver’s effort
but, should an accident occur, then the amount of losses is independent of it. Our
analysis extends straightforwardly to the (more realistic case) where the risk-taking
behavior also affects the probability distribution of damages, conditionally on an
accident occurring. The probability distribution of ỹi is the same for all i and we
restrict attention to a set of random variables ỹi that can be completely ordered by
first-order stochastic dominance. We index these probability distributions by their
mean value y = Eỹi for all i.6 Hence, an increase in y corresponds to a first-order
dominance shift in ỹi . A protective road safety measure corresponds to a decrease
in y.

Let �̃i be the random cost of an accident to the at fault driver i and his or her family.
�̃i depends on ỹi and also on a random noise εi which reflects the specificity of the
accident. We write

�̃i = �i (ỹi , εi )

with ∂�i/∂ ỹi ≥ 0, where εi is a random variable which reflects the specificity of the ac-
cidents. Function �i (ỹi , εi ) implicitly depends on the insurance coverage. For instance,
in case of a deductible, we have ∂�i/∂ ỹi = 1 for small ỹi . Conversely, ∂�i/∂ ỹi = 0 if
there is full insurance at the margin, and 0 < ∂�i/∂ ỹi < 1 in case of coinsurance. Fur-
thermore, the loss incurred by the driver also depends on the type of the accident.
For instance, full liability insurance is usually required but drivers may have partial
insurance for the damages to their own car. Likewise, there may be partial bodily
injury insurance (or even no pretium doloris insurance) and full property insurance.

6 More realistically, Eỹi may depend on parameters which are differentiated among drivers,
such as the size of the family or the type of the car. The model could be easily extended in
this direction by defining y as a parameter that affects the expected accident damages, i.e.,
Eỹi = �i (y) with �′

i > 0.
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The �i (., .) function are taken exogenously given. They may differ among drivers,
particularly when drivers buy different insurance policies with more or less generous
coverage. Given �i (., .) and εi , the probability distribution of �̃i depends on y and
because ∂�i/∂ ỹi ≥ 0, an increase in y entails a first-order dominance shift in �̃i .

Let wi be the wealth of driver i in the no-accident state. We have

wi = w̄i − Pi − ti , (1)

where w̄i denotes driver i’s initial wealth, Pi denotes the insurance premium, and ti

is a (positive or negative) transfer paid by driver i to the government. w̄i is taken as
exogenously given. Determinants of Pi and ti will be clarified in the next section.

We assume full liability of drivers for the damages they may inflict on other drivers.
Hence, the final wealth of a driver is unaffected if he or she is the victim of an ac-
cident caused by another driver. From a descriptive standpoint, this is certainly an
oversimplification of reality as it amounts to assuming that all damages can be com-
pensated. We make this assumption since partial liability would make the modeling
more cumbersome without any qualitative change in the results. Hence we have wf

i =
wi if driver i does not cause any accident and w f

i = wi − �̃i in the event of an accident
caused by this driver.

Driver i maximizes

Ui (ei , x, y, wi ) ≡ [1 − p(ei , x)]ui (wi , ei ) + p(ei , x)E[ui (wi − �̃i , ei ) | y] (2)

with respect to ei ≥ 0. Let êi = êi (x, y, wi ) be the optimal level of effort chosen by the
driver and pi = p(êi , x). The first-order condition for the optimal choice of effort is

∂Ui (êi , x, y, wi )
∂ei

= −∂p(êi , x)
∂ei

[ui (wi , êi ) − E[ui (wi − �̃i , êi ) | y]]

+ (1 − pi )
∂ui (wi , êi )

∂ei
+ pi

∂E[ui (wi − �̃i , êi ) | y]
∂ei

= 0 (3)

if êi > 0, which will be assumed in what follows. We have

∂2Ui (ei , x, y, wi )
∂e2

i

= −∂2 p(ei , x)
∂e2

i

[ui (wi , ei ) − E[ui (wi − �̃i , ei ) | y]]

− 2
∂p(ei , x)

∂ei

[
∂ui (wi , ei )

∂ei
− ∂E[ui (wi − �̃i , ei ) | y]

∂ei

]

+ [1 − p(ei , x)]
∂2ui (wi , ei )

∂e2
i

+ pi
∂2E[ui (wi − �̃i , ei ) | y]

∂e2
i

. (4)

The terms in the first and third lines of Equation (4) are negative. The term in the
second line is nonpositive when ∂2ui/∂wf

i ∂ei ≤ 0, which includes the case of a separable
utility function. In such a case, Ui is strictly concave with respect to ei. However, when
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∂2ui/∂wf
i ∂ei > 0, then the term in the second line of (4) is positive and Ui may not be a

concave function of ei. Consequently, êi (x, y, wi ) may have some discontinuity points.

At any continuity point, the local second-order condition is

A ≡ ∂2Ui (êi , x, y, wi )
∂e2

i

< 0.

Differentiating (3) then gives

∂ êi

∂x
= 1

A

{
∂2 p(êi , x)

∂ei∂x

[
ui (wi , êi ) − E[ui (wi − �̃i , êi ) | y]

]

× ∂p(êi , x)
∂x

[
∂ui (wi , êi )

∂ei
− ∂E[ui (wi − �̃i , êi ) | y]

∂ei

]}
, (5)

∂ êi

∂y
= − 1

A

{
∂p(êi , x)

∂ei

∂E[ui (wi − �̃i , êi ) | y]
∂y

+ pi
∂2E[ui (wi − �̃i , êi ) | y]

∂ei∂y

}
, (6)

∂ êi

∂wi
= 1

A

{
∂p(êi , x)

∂ei

[
∂ui (wi , êi )

∂w f
i

− ∂E[ui (wi − �̃i , êi ) | y]

∂w f
i

]

− (1 − pi )
∂2ui (wi , êi )

∂ei∂w f
i

− pi
∂2E[ui (wi − �̃i , êi ) | y]

∂ei∂w f
i

}
. (7)

These equations lead us to clear-cut conclusions when utility is separable between
wealth and effort. Indeed, when ∂2ui/∂wf

i ∂ei = 0, then several terms vanish in (5), (6)
and (7) and we can sign the partial derivatives of êi (x, y, wi ). First, we may observe
that ∂ êi/∂x and ∂2 p/∂ei∂x have opposite signs. In particular, when an increase in
x reduces the marginal effect of the driver’s effort on the probability of accident,
i.e., when ∂2 p/∂ei∂x > 0, then ∂ êi/∂x is negative. In such a case, the safer the road
network, the lower the marginal benefit of effort and thus the lower the driver’s
optimal effort level. Secondly, using ∂E[ui (wi − �̃i , êi ) | y]/∂y < 0 gives ∂ êi/∂y > 0: the
larger the expected damages in the case of an accident, the larger the effort. Finally,
the driver’s risk aversion implies ∂ êi/∂wi < 0: indeed, the larger the driver’s wealth,
the lower the expected utility decrease in the case of an accident (because the marginal
utility of wealth is decreasing) and thus the lower the incentive to careful driving.
These are intuitive behavioral properties and one can easily check that they still hold
if ∂2ui/∂wf

i ∂ei ≤ 0.

This is no more the case when ∂2ui/∂wf
i ∂ei > 0. For the sake of illustration, let us

assume that effort is monetary: ui(w
f
i , ei) ≡ vi(w

f
i − ei). Consider first the relationship

between x and êi . If ∂2 p/∂ei∂x = 0, that is, if p(ei, x) is separable, then ∂ êi/∂x is positive:
the safer the network, the larger the prevention expenditures! This counterintuitive



584 THE JOURNAL OF RISK AND INSURANCE

result goes through a wealth effect. Indeed, for a given ei, an increase in x reduces the
probability of being in the accident state, hence a decrease in the expected marginal
disutility of prevention expenditures—this is the second term in (5). In such a case,
the driver would have an incentive to increase the prevention expenditures after an
increase in x. This wealth effect may dominate if ∂2 p/∂ei∂x is positive but small:
in such a case, an increase in the road safety would induce a larger effort. Like-
wise, the wealth effect may perturb the relationship between y and ei. Indeed, the
larger the accident expected costs, the larger the expected marginal disutility of pre-
vention expenditures (because these expenditures have also to be paid in the acci-
dent state) and thus the lower the driver’s optimal effort. Similarly, an increase in
wi decreases the expected marginal disutility of prevention expenditures, hence a
larger incentive to spend more money on prevention. Proposition 1 recapitulates this
discussion.

Proposition 1: When ∂2ui/∂wf
i ∂ei ≤ 0, then ∂ êi/∂x < 0 if ∂2 p/∂ei∂x > 0, ∂ êi/∂y > 0,

and ∂ êi/∂wi < 0. When ∂2ui/∂wf
i ∂ei > 0, a wealth effect may invalidate the previous results.

Let

p̂i (x, y, wi ) = p(êi (x, y, wi ), x)

be the probability of an accident which follows from the driver’s optimal behavior
and from the road network parameters x and y. When ∂2ui/∂wf

i ∂ei ≤ 0, and in par-
ticular when utility is separable between wealth and effort, then Proposition 1 gives
∂ p̂i/∂y < 0 and ∂ p̂i/∂wi > 0 while ∂ p̂i/∂x may be negative or positive. In words, in
such a case, an increase in the expected cost of an accident or a decrease in the initial
wealth of a risk-averse individual lowers the probability of accident because of a more
cautious driving. Conversely, one cannot maintain with certainty that an increase in
the x parameter leads to a decrease in the probability of accident, since the beneficial
direct effect of safer highways may be offset by the behavioral adaptations of drivers.
Results are even more ambiguous when ∂2ui/∂wf

i ∂ei > 0—which includes the case
of a monetary effort—because the sign of the partial derivatives of êi (x, y, wi ) cannot
be signed with certainty. On the whole, it turns out that the sign of the total effect of
x, y, and wi on pi cannot be determined on theoretical grounds only: it is a matter of
empirical analysis.

COST–BENEFIT ANALYSIS OF ROAD SAFETY PROGRAMS

It is sometimes argued that the behavioral adaptation affecting a road safety policy
should be taken into account in appraising its desirability. For instance, according to
the OECD expert group: “The potential for behavioral adaptation affecting a safety
measure should be considered in estimating the costs and benefits of safety pro-
grams. Programs with minimal adaptation may be more effective, in the long run,
than those which produce large initial safety gains, but also produce adaptations
that eliminate the gain” (OECD, 1990, p. 118). While such a recommendation sounds
intuitive and seems to make sense, it lets open the question of how and to what
extent the behavioral-adaptation effect should be taken into account in cost–benefit
analysis.
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A standard rule would recommend to compare the willingness to pay of road users
for a safety measure to its cost. The users’ willingness to pay may be derived indirectly
by estimating the effects of the measure in terms of human and nonhuman benefits
(including the economic value of the decrease in the number of deaths and nonfatal
accidents). How should the behavioral-adaptation phenomenon be taken into account
in this balance of costs and benefits?

To answer this question, we will insert the analysis of the previous section in a simple
one-good model of optimal resource allocation under uncertainty and we will de-
rive simple rules for optimal public decision making. In what follows, we focus on
the case where accident costs are borne only by the individuals directly involved in
the crashes. We will later extend our results to the more general setting where private
costs and social costs may differ because of external accident costs.

A Simple Model of Optimal Resource Allocation
The insurance indemnity schedule of each driver i is supposed to be given. It deter-
mines the probability distribution of �̃i and also the driver i’s effort strategy êi (x, y, wi )
and his or her probability of accident p̂i (x, y, wi ). Insurers are assumed to offer insur-
ance policies at actuarial fair premium. In case of an accident, the insurance indemnity
is ỹi − �̃i . Hence, we have

Pi = p̂i (x, y, wi )[y − E(�̃i | y)]. (8)

The x, y parameters are affected by road safety programs. These programs entail public
expenditures C(x, y) with ∂C/∂x > 0 and ∂C/∂y < 0.7

The government budget constraint is written as

n∑
i=1

ti = C(x, y). (9)

Using (1), (8), and (9) gives

n∑
i=1

wi +
n∑

i=1

p̂i (x, y, wi )[y − E(�̃i | y)] + C(x, y) =
n∑

i=1

w̄i . (10)

Let Vi(wi, x, y) be the optimal expected utility of driver i with

Vi (wi , x, y) = max
ei

{[1 − p(ei , x)]ui (wi , ei ) + p(ei , x)E[ui (wi − �̃i , ei ) | y]}. (11)

The government chooses ti (for i = 1, . . . , n), x, and y. Equivalently, the govern-
ment chooses wi (for i = 1, . . . , n), x, and y. A Pareto improving road safety policy

7 Note that a safety improvement increases x but reduces y.
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corresponds to (infinitesimal) changes in the road transport system dx and dy and in
the drivers’ wealth levels dwi, for i = 1, . . . , n, such that firstly the expected utility of
all drivers is nondecreasing and it is increasing for at least one driver and, secondly,
the government budget constraint is satisfied. Let us first consider a prevention policy,
that is, a policy which affects the x parameter.

The first condition may be written as

∂Vi

∂wi
dwi + ∂Vi

∂x
dx ≥ 0 (12)

for all i = 1, . . . , n with a strict inequality for at least one driver i. The second condition
is

n∑
i=1

[
1 + ∂ p̂i

∂wi
(y − E(�̃i | y))

]
dwi +

n∑
i=1

∂ p̂i

∂x
[y − E(�̃i | y)] dx + ∂C

∂x
dx = 0. (13)

When dx > 0 , there exist compensatory transfers dwi, for i = 1, . . . , n, such that (12)
and (13) are satisfied if and only if

n∑
i=1

∂Vi/∂x
∂Vi/wi

[
1 + ∂ p̂i

∂wi
(y − E(�̃i | y))

]
−

n∑
i=1

∂ p̂i

∂x
[y − E(�̃i | y)] >

∂C
∂x

. (14)

Equation (14) is the condition to be satisfied for an intensification of the prevention
policy (i.e., an increase in x) to be welfare improving.

Likewise, a similar calculation shows that an intensification of the protection policy (i.e.,
a decrease in y) is welfare improving if and only if

−
n∑

i=1

∂Vi/∂y
∂Vi/wi

[
1 + ∂ p̂i

∂wi
(y − E(�̃i | y))

]
+

n∑
i=1

∂

∂y
[ p̂i (y − E(�̃i | y))] > −∂C

∂y
. (15)

Equations (14) and (15) are cost–benefit decision rules. The left-hand side and the right-
hand side in (14) and (15) are, respectively, the marginal social value and the marginal
cost of an increase in x or of a decrease in y. If the marginal social value exceeds the
marginal cost, then an increase in x or a decrease in y is welfare improving. More
precisely, such policies are potentially Pareto improving in the sense that, under (14)
or (15), there exist possible compensatory transfers that make everyone as well off. In
what follows, the distribution of tax burdens to pay for government safety projects is
not specified, so the condition called (for the sake of brevity) “Pareto improvements”
are actually potential Pareto improvement.

Let us consider a prevention policy. Set

WPx
i = ∂Vi/∂x

∂Vi/∂wi
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and

WP
x
i = WPx

i

[
1 + ∂ p̂i

∂wi
(y − E(�̃i | y))

]
.

WPx
i is the marginal willingness to pay of driver i for an increase in x.WP

x
i is an ad-

justed marginal willingness to pay that takes into account the effect of wi on insurance
costs (due to adjustment in the insurance premium under a policy of full risk rating).
We will refer to WP

x
i as the adjusted willingness to pay of driver i for the prevention policy.

Let

I x
i = −∂ p̂i

∂x
[y − E(�̃i | y)]. (16)

I x
i is the decrease in expected insurance costs which results from an increase in x. I x

i is
positive under partial behavioral risk compensation, i.e., when ∂ p̂i/∂x < 0. It would be
negative when ∂ p̂i/∂x > 0, if there were overcompensation of the preventive measure
through more risky driving.

Likewise, and with similar interpretations, let

WPy
i = −∂Vi/∂y

∂Vi/wi
,

WP
y
i = WPy

i

[
1 + ∂ p̂i

∂wi
(y − E(�̃i | y))

]
,

and

I y
i = ∂

∂y
[ p̂i (y − E(�̃i | y))].

Hence, rewriting (14) and (15) more compactly, we obtain the following result.

Proposition 2: A preventive road safety measure is Pareto improving if

n∑
i=1

WP
x
i +

n∑
i=1

I x
i >

∂C
∂x

, (17)

and a protective road safety measure is Pareto improving if

n∑
i=1

WP
y
i +

n∑
i=1

I y
i > −∂C

∂y
. (18)

Proposition 2 says that a road safety measure (be it preventive or protective) is Pareto
improving if its marginal cost is lower than the corresponding sum of the drivers’
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adjusted marginal willingness to pay for such a measure and of the reduction in
insurance costs.

Estimating the Drivers’ Willingness to Pay for a Road Safety Measure
However, it is unlikely that the drivers’ (adjusted) marginal willingness to pay for a
road safety measure will be easily observed by the Government: this may be consid-
ered as an hidden information privately hold by drivers. The conditions in Proposition
2 are thus of little help unless we turn them into equivalent (or approximately equiv-
alent) criteria that do not depend too heavily on such an hidden information. Fortu-
nately, we can connect the driver’s marginal willingness to pay for a safety measure
to the effects of this measure on losses.

Let us consider first a prevention measure. Using the envelope theorem then gives

WPx
i = ∂p

∂x
(êi , x)

ui (wi , êi ) − E[ui (wi − �̃i , êi ) | y]

(1 − pi )
∂ui (wi , êi )

∂w f
i

+ pi E
[
∂ui (wi − �̃i , êi )

∂w f
i

∣∣∣∣ y
] , (19)

where pi ≡ p(êi , x). Using (19) allows us to show that, if the probability of an accident
is not too large then the marginal willingness to pay of a risk-averse driver for an
increase in x is larger than the corresponding decrease in his expected uninsured
damages with unchanged behavior. This is established in the following lemma.8

Lemma 1: Assume Mi <
∂2ui (w, êi )

∂w2 < mi < 0 for all w. Then

∂Vi/∂x
∂Vi/∂wi

> −∂p
∂x

(êi , x)E(�̃i | y) if 0 ≤ pi ≤ mi

Mi + mi
.

Proof: See the Appendix.

Lemma 1 can be interpreted as follows. Assume that the effort of driver i is fixed at
its optimal level ei = êi and consider a small variation dx. Let

dt∗i = −∂p
∂x

(êi , x)E(�̃i | y) dx

be a transfer from driver i to the government which compensates for the variation in
the accident probability dpi = [∂p(êi , x)/∂x] dx in such a way that driver i’s expected
wealth is kept constant. Hence (dx, dt∗i ) induces a mean preserving variation in driver
i’s wealth. Assume dx < 0, which gives dpi > 0. Such a change puts more weight on
the “accident” state and less weight on the “no-accident” state. It is in fact a mean
preserving spread in the sense of Rothschild and Stiglitz (1970) if the probability
of the “accident” state is not too large. Otherwise, it would be a mean preserving

8 Note that more restrictive conditions on ui(.) would allow to relax the upper bound on pi

under which the inequality of Lemma 1 holds. In particular, if ui(.) exhibits mixed risk aversion
in the sense of Caballé and Pomansky (1996), then as shown by Dachraoui et al. (2000), the
inequality of Lemma 1 holds if pi < 1/2.
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contraction. Driver i is negatively affected by a mean preserving spread in his (or her)
wealth because he (or she) is risk averse. Hence, if pi is not too large, the net transfer to
driver i denoted by dwi which would exactly compensate for the utility loss induced
by the increase in the accident probability is such that dwi > −dt∗

i , which implies

dwi

dx
> −∂p

∂x
(êi , x)E(�̃i | y).

This gives a lower bound for the marginal willingness to pay for an increase in x,
when êi is fixed at its optimal level. Because of the envelope theorem, the fact that
driver i optimally modifies his or her effort level in response to changes in x does not
change the result.

Using (19) also allows us to get an estimate of the marginal willingness to pay for a
prevention measure when pi is small. Indeed, we have

lim
pi→0

WPx
i × 1

∂p
∂x

(êi , x)
= ui (wi , êi ) − E[ui (wi − �̃i , êi ) | y]

∂ui (wi , êi )

∂w f
i

. (20)

Using a second-order Taylor expansion gives

E[ui (wi − �̃i , êi ) | y] � ui (wi , êi ) − ∂ui (wi , êi )

∂w f
i

E(�̃i | y) + 1
2

∂2ui (wi , êi )

∂w f 2
i

E
(
�̃2

i

∣∣ y
)
. (21)

Equations (20) and (21) then yield

lim
pi→0

WPx
i × 1

∂p
∂x

(êi , x)
� E(�̃i | y)

[
1 + Ri (wi , êi )E

(
�̃2

i

∣∣ y
)

2wi E(�̃i | y)

]
, (22)

where Ri (w, êi ) ≡ −w ∂2ui (w, êi )
∂w2 /

∂ui (w, êi )
∂w is the coefficient of relative risk aversion.

As an example, assume �̃i � exp(λ) with λ−1 = E(�̃i | y). We then have E(�̃2
i | y)/

E(�̃i | y) = 2E(�̃i | y). Assume furthermore λ−1 = $1000, wi = $25,000, and Ri (wi , êi ) ∈
[1, 4].9 We then have

Ri (wi , êi )E
(
�̃2

i

∣∣ y
)

2wi E(�̃i | y)
∈ [0.04, 0.16]

which suggests that, in practice, the difference

WPx
i − ∂p

∂x
(êi , x)E(�̃i | y)

is probably small for reasonable estimates of the coefficient of relative risk aversion.

9 See Gollier (2001, p. 31) on why a coefficient of relative risk aversion between 1 and 4 is a
reasonable assumption.
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Hence we may write

WPx
i = −θ1

i
∂p
∂x

(êi , x)E(�̃i | y) (23)

with θ1
i > 1 and with reasons to think that, on real data, the difference between θ1

i and
1 is probably not very large.10

Likewise, using the envelope theorem gives

− ∂Vi/∂y
∂Vi/∂wi

= pi

∂

∂y
E[ui (wi − �̃i , êi ) | y]

(1 − pi )
∂ui (wi , êi )

∂w f
i

+ pi E

[
∂ui (wi − �̃i , êi )

∂w f
i

∣∣∣∣ y

] , (24)

where pi = p(êi , x).

Lemma 2: Assume that �̃i is distributed on [0, ȳ], ȳ > 0, according to a density function
f (�̃i | y). Let F (�̃i | y) denote the corresponding cumulative distribution function. Assume

that u′′
i < 0 and that

∂ F
∂y (�̃i | y)

f (�̃i | y) is nonincreasing with respect to �̃i . Then

− ∂Vi/∂y
∂Vi/∂wi

> pi
∂E(�̃i | y)

∂y
.

Proof: See the Appendix.

Lemma 2 provides a condition under which the willingness to pay of a risk-averse
driver for an intensification in the protection policy (i.e., for a decrease in y) is larger
than the corresponding decrease in expected uninsured accident costs for an un-
changed driving effort level. The intuitive meaning of this condition is as follows.
Let us remind that an increase in y shifts the distributions of ỹ and �̃i in the sense of
first-order stochastic dominance. Consider a decrease in y, which gives a decrease in
the average cost of accidents. Because the marginal utility of wealth is decreasing, the
willingness to pay of a risk-averse driver for such a protection policy will be higher
when this policy lowers the probability of the most serious accidents than when it re-
duces the gravity of minor accidents. In Lemma 2, we make an assumption to express
the fact that the protection policy affects more intensely the most serious accidents
(i.e., the accidents with large damages, particularly fatalities) than the accidents with
slight material damages. In mathematical terms, we postulate that, following an in-
crease in y, the rightward shift of the cumulative distribution F (�̃i | y)—if we measure
it horizontally—is nondecreasing with �̃i . This is true if ∂ F

∂y (�̃i | y)/ f (�̃i | y) is nonin-
creasing in �̃i which is assumed in what follows.

As an illustration, we may get an estimate of the marginal willingness to pay for a
protection measure when pi is small and �̃i � exp(λ) with λ−1 = E(�̃i | y). We have

10 Note that θ1
i would be equal to 1 if driver i were risk neutral.
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lim
pi→0

WPy
i × 1

pi
=

∂

∂y
E[ui (wi − �̃i , êi ) | y]

∂ui (wi , êi )

∂w f
i

(25)

and a simple calculation gives

∂

∂y
E[ui (wi − �̃i , êi ) | y] =

∂E(�̃i | y)
∂y

E(�̃i | y)

∫ +∞

0

∂ui (wi − �̃i , êi )

∂w f
i

�̃i f (�̃i | y) d �̃i .

Using a second-order Taylor expansion of ∂ui (wi − �̃i , êi )/∂w f
i around ∂ui (wi , êi )/∂w f

i
then yields

∂

∂y
E[ui (wi − �̃i , êi ) | y]

∂ui (wi , êi )

∂w f
i

� ∂E(�̃i | y)
∂y

[
1 + Ri (wi , êi )E(�̃i | y)

wi

]
. (26)

Hence, for instance, when λ−1 = $1000, wi = $25,000 and Ri (wi ) ∈ [1, 4], we get

1.04 × pi
∂E(�̃i | y)

∂y
≤ WPy

i ≤ 1.16 × pi
∂E(�̃i | y)

∂y
.

Of course, we should not give too much importance to such an example but once
again it suggests that the adjustment of the marginal willingness to pay due to risk
aversion is probably small.

Hence we may write

WPy
i = θ2

i pi
∂E(�̃i | y)

∂y

with θ2
i > 1.11 These results are summarized in the following Proposition.

Proposition 3: Under the assumptions made in Lemmas 1 and 2, we have

WPx
i = −θ1

i
∂p
∂x

(êi , x)E(�̃i | y), (27)

WPy
i = θ2

i pi
∂E(�̃i | y)

∂y
(28)

with θ1
i > 1 and θ2

i > 1.

11 Note that θ2
i would be equal to one if driver i were risk neutral.
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Cost–Benefit Criteria
Proposition 3 allows us to rewrite the total marginal benefits of road safety measures
in a more explicit way. Using (27) gives

n∑
i=1

WP
x
i +

n∑
i=1

I x
i = −

n∑
i=1

θ1
i
∂p
∂x

(êi , x)E(�̃i | y)
[

1 + ∂ p̂i

∂wi
(y − E(�̃i | y))

]

−
n∑

i=1

∂ p̂i

∂x
[y − E(�̃i | y)]

=
n∑

i=1

[y + (
θ1

i − 1
)
E(�̃i | y)]

∂p
∂x

(êi , x)

−
n∑

i=1

∂p
∂e

(êi , x)
[
∂ êi

∂x
(x, y, w) + θ1

i
∂p
∂x

(êi , x)E(�̃i | y)
∂ êi

∂wi
(x, y, w)

]

× [y − E(�̃i | y)], (29)

and using (28) gives

n∑
i=1

WP
y
i +

n∑
i=1

I y
i =

n∑
i=1

[
θ2

i pi
∂E(�̃i | y)

∂y

] [
1 + ∂ p̂i

∂wi
(y − E(�̃i | y))

]

+
n∑

i=1

pi

[
1 − ∂E(�̃i | y)

∂y

]
+

n∑
i=1

∂

∂y
[ p̂i (y − E(�̃i | y))]

=
n∑

i=1

[
1 + (

θ2
i − 1

)∂E(�̃i | y)
∂y

]
p(ei , x)

−
n∑

i=1

∂p
∂e

(êi , x)
[
∂ êi

∂y
(x, y, w) + θ2

i pi
∂E(�̃i | y)

∂y
∂ êi

∂wi
(x, y, w)

]

× [y − E(�̃i | y)]. (30)

Hence the following Proposition.

Proposition 4: A preventive road safety measure is Pareto improving if and only if

−
n∑

i=1

[
y + (

θ1
i − 1

)
E(�̃i | y)

]∂p
∂x

(êi , x) −
n∑

i=1

�x
i
∂p
∂e

(êi , x)[y − E(�̃i | y)] >
∂C
∂x

, (31)

where

�x
i = ∂ êi

∂x
(x, y, w) + θ1

i
∂p
∂x

(êi , x)E(�̃i | y)
∂ êi

∂wi
(x, y, w). (32)
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A protective road safety measure is Pareto improving if and only if

n∑
i=1

pi

[
1 + (

θ2
i − 1

)∂E(�̃i | y)
∂y

]
+

n∑
i=1

�
y
i
∂p
∂e

(êi , x)[y − E(�̃i | y)] > −∂C
∂y

, (33)

where

�
y
i = ∂ êi

∂y
(x, y, w) + θ2

i pi
∂E(�̃i | y)

∂y
∂ êi

∂wi
(x, y, w). (34)

The first term in the left-hand side of (31) is the direct marginal welfare effect of a pre-
vention measure with unchanged behaviors. For each driver, this direct effect is the
sum of the decrease in the total losses which results from a unit increase in x with un-
changed behaviors (i.e., −y∂ p/∂x) and of an adjustment term −(θ1

i − 1)E(�̃i | y)∂p/∂x
that gives a positive social value to the decrease in uninsured losses incurred by risk-
averse drivers.12 This first term may be called the adjusted direct welfare gain of the
prevention measure. The second term in the left-hand side of (31) is the increase in
insured losses following a unit increase in x, because of drivers’ behavioral adapta-
tion. Indeed, observe that �x

i dx is the effort variation resulting from an infinitesimal
variation dx. This effort variation includes the direct effect ∂ êi/∂x and the (adjusted
for risk aversion) wealth effect θ1

i E(�̃i | y)[∂p(êi , x)/∂x]∂ êi/∂wi due to the change in the
uninsured losses. Multiplying this effort variation �x

i by [∂p(êi , x)/∂e][y − E(�̃i | y)]
gives the effect of behavioral adaptation on insured losses. In a word, the first part
of Proposition 4 says that a more intensive prevention policy (associated with ade-
quately chosen compensatory transfers) is Pareto improving when its marginal cost
is lower than the difference between the adjusted direct welfare gain and the effect of
behavioral adaptation on insured losses.

Note that a conventional cost–benefit study would usually identify the benefits of a
prevention measure with the first term only, probably ignoring the adjustment for
risk aversion. This is usually done by estimating the decrease in human or nonhu-
man losses that would have been possible in given circumstances (particularly with
given driving behaviors) if the prevention measure had been previously adopted.
Extrapolating the results from these case studies to the whole road transport system
would allow the public decision maker to appraise the desirability of a prevention
measure. Our results show that the additional expected insured losses resulting from
behavioral adaptation should be deduced from the previous estimate of net benefits
of a traffic safety policy.

The second part of Proposition 4 can be rephrased in similar terms. Indeed {pi [1 +
(θ2

i − 1)∂E(�̃i | y)/∂y]} dy is the adjusted direct welfare gain of the protection measure dy
for driver i and �

y
i [∂p(êi , x)/∂e][y − E(�̃i | y)] dy is the effect of behavioral adaptation

on insured losses with �
y
i dy the induced effort variation. Hence, Proposition 4 says

that a more intensive protection policy is Pareto improving if its marginal cost is less
than the difference between the adjusted welfare gain and the effect of behavioral
adaptation on insured losses.

12 Note that the adjustment term would vanish if driver i were risk neutral.
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Social Cost of Accidents
This section extends our results to the more general case where accidents may entail
some social costs that are not directly incurred by the individuals involved in the car
crashes. Individuals only care about the residual value (net of insurance) of the ac-
cident private costs but, as regards public policies, what really matters are the social
costs of accidents. Private costs and social costs differ especially when the private
value of life differs from the social value. The private value of a statistical life mea-
sures how much individuals are willing to pay to avoid risks that will result in one
less death13 but it may differ from the social value of life, for example, when wages
differ from marginal productivity of labor or when the premature death of a skilled
worker entails a negative external effect in the productive sector. Furthermore, in ad-
dition to the monetary and nonmonetary private costs (including pain and suffering)
incurred by the individuals who are directly concerned by car accidents, the social
costs of motor vehicle crashes also include additional components such as the cost of
emergency services, the additional time travel costs for other motorists, the workplace
disruptions, and the cost of legal proceedings.14 These additional costs are part and
parcel of the social costs of accidents.

For the sake of notational simplicity, we will assume that social expected costs and
private expected costs are proportional. The total expected social cost of an accident
is now written as (1 + λ)y, where y and λy, respectively, denote the expected cost
incurred by the individuals involved in the accident and the other expected costs. We
will refer to y and λy as the expected direct cost and the expected external cost of an
accident. Hence, it is assumed that a protection measure simultaneously decreases
these two components.

In what follows, wi and ti have unchanged meanings: wi still denotes the wealth of
driver i in the no-accident state and ti denotes the transfer to the government. Since
the government can make lump sum transfers to the individuals, it is not restrictive to
assume that the external costs of accidents are fully borne by the government budget,
either directly in case of monetary expenditures or indirectly through compensatory
transfers paid to the affected individuals. With this assumption, Equation (1) still
holds but the government budget constraint is now written as

n∑
i=1

ti = C(x, y) + λy
n∑

i=1

p̂i (x, y, wi ) (35)

instead of (9). In words, the transfers to the government should cover at the same
time the cost of road safety public expenditures and the external costs of accidents.
Consequently, (10) is replaced by

13 The private value of life may be estimated in several ways, including the wage premia for
risky jobs and revealed preferences approaches such as the consumers’ willingness to pay for
safety features (e.g., safer cars); see Boardman et al. (2001, Ch. 15) for an introduction to the
estimation techniques and how the value of life is used in cost–benefit analysis and Viscusi
(1993) for an extensive review of both the conceptual issues and the empirical studies on the
value of life.

14 Miller (1993) estimates the cost of US motor vehicle crashes. He points out that not using
comprehensive costs measures can significantly distort the cost–benefit analysis of road safety
measures.
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n∑
i=1

wi +
n∑

i=1

p̂i (x, y, wi )[(1 + λ)y − E(�̃i | y)] + C(x, y) =
n∑

i=1

w̄i . (36)

A straightforward adaptation of the derivation performed in the previous sections
then leads to the following Proposition.

Proposition 5: When accidents entail external costs, a preventive road safety measure is
Pareto improving if and only if

−
n∑

i=1

[(1 + λ)y + (
θ1

i − 1
)
E(�̃i | y)]

∂p
∂x

(êi , x) −
n∑

i=1

�x
i
∂p
∂e

(êi , x)[(1 + λ)y − E(�̃i | y)] >
∂C
∂x

,

(37)

where �x
i is given by (32). Similarly, a protective road safety measure is Pareto improving if

and only if

n∑
i=1

pi

[
1 + λ + (

θ2
i − 1

)∂E(�̃i | y)
∂y

]
+

n∑
i=1

�
y
i
∂p
∂e

(êi , x)[(1 + λ)y − E(�̃i | y)] > −∂C
∂y

,

(38)

where �
y
i is given by (34).

Proposition 5 extends the results of Proposition 4 to the case where the social costs
of accidents may differ from the private costs. The first term in the left-hand side of
(37) is the direct monetarized welfare gain induced by the prevention measure: it is
the increase in welfare (external effects included) due to the decrease in the accident
probability for unchanged behaviors and after adjustment for risk aversion. Proposi-
tion 5 shows that the social cost of behavioral adaptation should be deduced from this
adjusted direct welfare gain in order to compute the net social benefit of the preven-
tion measure. This social cost of behavioral adaptation now includes the additional
insured losses and also the decrease in the external costs of accidents induced by the
change in the drivers’ behavior. In other words, the external cost of accidents increases
at the same time the direct welfare gain of the prevention measure and the social cost
of behavioral adaptation. Equation (38) can be interpreted similarly in the case of a
protection measure.

CONCLUSION

It is often argued that ignoring the behavioral adaptation of drivers would bias the
cost–benefit analysis of a road safety measure toward positive net benefits of an active
traffic safety regulation. However, the way in which behavioral adaptations should be
taken into account in the balance of costs and benefits is not self-evident. The purpose
of this article was to clarify this issue of how behavioral adaptation should affect
conventional cost–benefit analysis in the framework of a simple model of resource
allocation under uncertainty. In the end, we got a rather simple result: the net benefits
of a road safety policy are written as the difference between the (adjusted for risk
aversion) reduction of total losses under unchanged behaviors and the increase in
insured losses attributable to behavioral adaptation. Furthermore, the same kind of
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formula applies to prevention measures as to protection policies and they can be
adapted so that the external costs of accidents are taken into account.

Such a cost–benefit criterion allows the policymaker to appraise the desirability of
additional public investments for highways, but it can also be used for new mandatory
automobile safety devices, be they preventive (e.g., antilocking systems) or protective
(e.g., seat belts, crash tests, . . .). Among other possible extensions, we may also note
that, in practice, behavioral adaptation to road safety policy also goes through an
increase in traffic density, which may induce externalities in the form of congestion
costs or of an increase in average accident risk. Furthermore, accidents may also be
costly for the drivers not at fault, particularly in case of bodily injuries. Although
the main objectives of this article were of a theoretical nature, taking these effects
into account would put our analysis back in a more realistic framework. This would
certainly be essential for the purpose of implementation on real data.

Note finally that the results derived in this article suggest that there exists some kind
of substitutability between private protection from accident risks through insurance
and public protection through tax financed expenditures or mandatory safety devices.
When agents are more completely insured against accident losses, the social cost of
behavioral adaptation is higher and, in such a case, the social value of a more active
safety regulation is lower.

APPENDIX

Proof of Lemma 1: For �i fixed, the Taylor inequalities give




ui (wi , êi ) − ui (wi − �i , êi ) ≥ �i
∂ui (wi , êi )

∂w f
i

− �2
i

2
mi ,

ui (wi , êi ) − ui (wi − �i , êi ) ≥ �i
∂ui (wi − �i , êi )

∂w f
i

+ �2
i

2
Mi .

Hence

ui (wi , êi ) − ui (wi − �i , êi ) ≥ �i

[
(1 − pi )

∂ui (wi , êi )

∂w f
i

+ pi
∂ui (wi − �i , êi )

∂w f
i

]

+ �2
i

2
[pi Mi − (1 − pi )mi ]

≥ �i

[
(1 − pi )

∂ui (wi , êi )

∂w f
i

+ pi
∂ui (wi − �i , êi )

∂w f
i

]
.

Since ∂ui (wi − �i , êi )/∂w f
i is increasing in �i , both random variables �̃i and ∂ui (wi −

�̃i , êi )/∂w f
i are positively correlated. Therefore, we may write

E

[
�̃i

∂ui (wi − �̃i , êi )

∂w f
i

∣∣∣∣∣ y

]
≥ E[�̃i | y]E

[
∂ui (wi − �̃i , êi )

∂w f
i

∣∣∣∣∣ y

]
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and

ui (wi , êi ) − E[ui (wi − �̃i , êi ) | y] ≥ E[�̃i | y]E

[
(1 − p)

∂ui (wi , êi )

∂w f
i

+ p
∂ui (wi − �̃i , êi )

∂w f
i

∣∣∣∣∣ y

]
.

Finally, (19) gives the result. Q.E.D.

Proof of Lemma 2: We have

E[ui (wi − �̃i , êi ) | y] =
∫ ȳ

0
ui (wi − �̃i , êi ) f (�̃i | y) d �̃i .

Integrating by parts gives

E[ui (wi − �̃i , êi ) | y] = ui (wi − ȳ, êi ) −
∫ ȳ

0

∂ui (wi − �̃i , êi )

∂w f
i

F (�̃i | y) d �̃i .

We may write

∂E[ui (wi − �̃i , êi ) | y]
∂y

= −
∫ ȳ

0

∂ui (wi − �̃i , êi )

∂w f
i

∂ F (�̃i | y)
∂y

d �̃i .

Assuming that (∂ F /∂y)(�̃i | y)
f (�̃i | y) is nonincreasing in �̃i , we have

∂E[ui (wi − �̃i , êi ) | y]
∂y

≥ −
∫ ȳ

0

∂ui (wi − �̃i , êi )

∂w f
i

f (�̃i | y) d �̃i

∫ ȳ

0

∂ F (�̃i | y)
∂y

d �̃i

because ∂ui (wi − �̃i , êi )
∂w f

i
and (∂ F/∂y)(�̃i | y)

f (�̃i | y) are positively correlated random variables. Hence

we have

∂E[ui (wi − �̃i ) | y]
∂y

≥ E

[
∂ui (wi − �̃i , êi )

∂w f
i

∣∣∣∣∣ y

]
∂

∂y
E(�̃i | y).

Using (24) then gives

− ∂Vi/∂y
∂Vi/∂wi

≥
pi E

[
∂ui (wi − �̃i , êi )

∂w f
i

∣∣∣∣∣ y

]
∂

∂y
E(�̃i | y)

(1 − pi )
∂ui (wi , êi )

∂w f
i

+ pi E

[
∂ui (wi − �̃i , êi )

∂w f
i

∣∣∣∣∣ y

]

> pi
∂

∂y
E(�̃i | y)
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because

E

[
∂ui (wi − �̃i , êi )

∂w f
i

∣∣∣∣ y

]
>

∂ui (wi , êi )

∂w f
i

. Q.E.D.
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