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Abstract

We show that if an agent reasons according to standard inference rules, the

axioms of truth and introspection extend from the set of non-epistemic propositions

to the whole set of propositions. This implies that the usual axiomatization of

the partitional possibility correspondence, which describes an agent who processes

information rationally, is redundant.
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1 Introduction

The information of an agent who processes information rationally is commonly repre-

sented by a partition over a state space (Aumann, 1976). The usual axiomatization for
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this representation is that of an agent whose knowledge satisfies truth and introspection

(Fagin et al., 1995; Samet, 1990; Aumann, 1999). The truth axiom says that any proposi-

tion known to the agent is true. According to the introspection axioms, the agent knows

both what he knows and what he does not know.

It is generally admitted that the agent’s capacity to draw logical inferences is part of

the properties that define the agent’s rationality (e.g., see Geanakoplos, 1989). However,

it is not clear why a rational agent should also be endowed with introspective abilities.

The objective of this note is to investigate to what extent truth and introspection can be

explained by a deductive process on the part of the agent.

We consider an agent who observes natural facts about the surrounding world. These

natural facts are those described by non-epistemic – else called Boolean – propositions

and correspond to sentences that do not involve the agent’s own knowledge. The agent

also observes his own knowledge about natural facts, i.e., he knows what he knows and

what he does not know about natural facts.

We show that the truth and introspection axioms are then satisfied for every propo-

sition, whether epistemic or not. This result provides a justification for the truth axiom

and introspection for the epistemic propositions that is based on reasoning.

We express our results in terms of axiomatizations of knowledge. Formally, we show

that the standard axiomatization of syntactic knowledge S5 is unchanged if truth and

introspection are assumed on non-epistemic propositions only. In this sense, our result

shows that the usual axiomatization S5 is redundant, as it can be replaced by a smaller

set of axioms. It is well known that in S5, every proposition is equivalent to a proposi-

tion of epistemic depth at most one (an early reference to this result is Halpern, 1995).

Nevertheless, our result does not appear to be a consequence of this fact, and our proof,

although relatively elementary, cannot be reduced to this remark.

The axiomatic model and main result are presented in Section 2. In Section 3, we

recall the connection between S5 and partitional models, discuss the tightness of the

weaker axiomatization presented, and present a multi-agent extension.

2 Model and main result

We recall the standard syntactic model of knowledge from (Chellas, 1980; Fagin et al.,

1995). Let Φ be the alphabet of the agent’s language, called the set of atomic proposi-

tions. These atomic propositions express basic facts about nature such as “it is raining
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in New York”, or “the cat is mortal”. The set of non-epistemic (else called Boolean)

propositions L0(Φ), with generic elements φ, ψ, is the closure of Φ with respect to the

standard connectives of negation, ¬, and conjunction, ∧.

The knowledge modality is denoted K, and Kφ stands for “the agent knows φ”. The

set of all propositions L(Φ), with generic elements φ, ψ, is the closure of Φ with respect

to ¬, ∧ and the knowledge modality K. The propositions φ∨ψ, φ→ ψ and φ↔ ψ stand

for ¬(¬φ ∧ ¬ψ), ¬φ ∨ ψ, and (φ→ ψ) ∧ (ψ → φ) respectively.

We recall the standard Modal Logic (ML) system S5, consisting of the following axioms

and inference rules:

A1. All tautologies of propositional calculus

A2.
(

Kφ ∧K(φ→ ψ)
)

→ Kψ (Axiom of distribution)

A3. Kφ→ φ (Truth axiom)

A4. Kφ→ KKφ (Positive introspection)

A5. ¬Kφ→ K¬Kφ (Negative introspection)

R1. From φ and (φ→ ψ) infer ψ (Modus Ponens)

R2. From φ infer Kφ (Rule of necessitation)

The first axiom, A1, refers to logical propositions such as (φ→ ψ)↔ (¬ψ → ¬φ), which

are always logically true; A2 says that if the agent knows that φ implies ψ, and knows φ,

then he necessarily knows ψ; the truth axiom says that the agent cannot wrongly know a

proposition; positive introspection states that the agent knows what he knows, whereas

negative introspection says that the agent knows what he does not know.

The propositions that can be proven from the axioms, or from other propositions that

have already been proven, are called theorems. Formally, the set of theorems is the closure

of the axioms with respect to the inference rules. Let T5 denote the set of theorems in S5.

We show that S5 is unchanged if Truth and Introspection are assumed for natural

propositions only. Formally, let S50 be the system consisting of the axioms:

A0 −A2 for all propositions in L(Φ),

A3 −A5 for all propositions in L0(Φ), and
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together with the inference rules R1 and R2. Wet let T 0
5 denote the set of theorems in

S50.

Our main theorem shows that it suffices to assume the truth axiom and introspection

only for the non-epistemic propositions L0(Φ) in order to obtain the same knowledge as

in S5.

Main Theorem. T 0

5
= T5.

2.1 Proof of the Main Theorem

The general strategy of the proof is to show that (i) the set of propositions that satisfy

truth and introspection is closed under a number of operations, and (ii) these operations

are sufficient to generate the whole set of propositions starting from the non-epistemic

propositions only. It is relatively straightforward to show that A3−A5 for φ and ¬φ imply

A3− A5 for Kφ and ¬Kφ (Lemma 2), and that A3 −A5 for φ and ψ imply A3 − A5 for

φ∧ψ (Lemma 3). However, it is not true in general that the set of propositions that satisfy

A3 − A5 is closed under ∨. Instead, we show that if φ, ψ satisfy truth and introspection,

so do Kφ ∨ ψ and ¬Kφ ∨ ψ (Lemma 5).

Remark 1. The following property, called consistency, states that the agent cannot

believe a proposition and its negation simultaneously.

A0. Kφ→ ¬K¬φ (Consistency axiom)

It is a consequence of A1−A3, hence is automatically satisfied in S50. We make repeated

use of it in the proofs. ⊳

We divide the proof of the Main Theorem into a series of lemmata. In the proofs we

use the convenient notation φ ⇒ ψ to express that ψ is a theorem deduced from φ. We

indicate, as a superscript of “⇒”, which axioms, rules of inference, or previous lemmata

(denoted by L.) are used in this deduction.

Definition 1. For some Ψ ⊆ L(Φ), let S5(Ψ) denote the ML system consisting of

• the axioms A0 − A2 for all proposition in L(Φ),

• the axioms A3 − A5 for all propositions in Ψ, and

• the inference rules R1 − R2.

Lemma 1. (Kφ ∧Kψ)↔ K(φ ∧ ψ) is a theorem in S5(Ψ) for any Ψ ⊆ L(Φ).
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Proof. (→) : The proposition φ→
(

ψ → (φ∧ψ)
)

is a tautology of propositional calculus,

and therefore it follows from R2 and A2 that Kφ→ K
(

ψ → (φ∧ψ)
) A1=⇒ Kφ→

(

Kψ →

K(φ ∧ ψ)
)

, which can be rewritten as (Kφ ∧Kψ)→ K(φ ∧ ψ).

(←) : the proposition (φ ∧ ψ) → φ is a tautology of propositional calculus, and

therefore it follows from R2 and A2 that K(φ ∧ ψ) → Kφ. Likewise, for (φ ∧ ψ) → ψ,

which completes the proof.

Lemma 2. A3 −A5 for Kφ and ¬Kφ are theorems in S5({φ,¬φ}).

Proof. (A3 for Kφ) : The agent assumes A3 for φ. Hence, (Kφ → φ)
R2=⇒ K(Kφ →

φ)
A2,R1

=⇒ (KKφ→ Kφ).

(A3 for ¬Kφ) : The agent assumes A0 forKφ. Thus, (KKφ→ ¬K¬Kφ)
A4,R1

=⇒ (Kφ→

¬K¬Kφ)
A1,R1

=⇒ (K¬Kφ→ ¬Kφ).

(A4 for Kφ) : The agent assumes A4 for φ. Hence, (Kφ → KKφ)
R2=⇒ K(Kφ →

KKφ)
A2,R1

=⇒ (KKφ→ KKKφ).

(A4 for ¬Kφ) : The agent assumes A5 for φ. Hence, (¬Kφ→ K¬Kφ)
R2=⇒ K(¬Kφ→

K¬Kφ)
A2,R1

=⇒ (K¬Kφ→ KK¬Kφ).

(A5 for Kφ) : The agent assumes A4 for φ. Thus, (Kφ → KKφ)
A1,R1

=⇒ (¬KKφ →

¬Kφ)
A5,R1

=⇒ (¬KKφ → K¬Kφ). Furthermore, the agent has already proven A3 for Kφ,

and therefore, (KKφ → Kφ)
A1,R1

=⇒ (¬Kφ → ¬KKφ)
R2=⇒ K(¬Kφ → ¬KKφ)

A2,R1

=⇒

(K¬Kφ → K¬KKφ). Combining the two we obtain (¬KKφ → K¬Kφ) ∧ (K¬Kφ →

K¬KKφ)
R1=⇒ (¬KKφ→ K¬KKφ), which completes the proof.

(A5 for ¬Kφ) : The agent assumes A5 for φ. Thus, (¬Kφ→ K¬Kφ)
A1,R1

=⇒ (¬K¬Kφ→

Kφ)
A4,R1

=⇒ (¬K¬Kφ → KKφ)
A4,R1

=⇒ (¬K¬Kφ → KKKφ). Moreover, the agent assumes

A0 for Kφ, implying (KKφ → ¬K¬Kφ)
R2=⇒ K(KKφ → ¬K¬Kφ)

A2,R1

=⇒ (KKKφ →

K¬K¬Kφ). Combining the two yields (¬K¬Kφ→ KKKφ)∧(KKKφ→ K¬K¬Kφ)
R1=⇒

(¬K¬Kφ→ K¬K¬Kφ), which completes the proof.

Lemma 3. A3 −A5 for φ ∧ ψ are theorems in S5({φ, ψ}).

Proof. (A3) It follows from Lemma 1 that
(

K(φ∧ψ)→ (Kφ∧Kψ)
)

. Hence,
(

K(φ∧ψ)→

(Kφ ∧Kψ)
) A3,R1

=⇒
(

K(φ ∧ ψ)→ (φ ∧ ψ)
)

.

(A4) It follows from Lemma 1 that
(

K(φ ∧ ψ)→ (Kφ ∧Kψ)
)

. Hence,
(

K(φ ∧ ψ)→

(Kφ∧Kψ)
) A4,R1

=⇒
(

K(φ∧ψ)→ (KKφ∧KKψ)
) L.1,R1

=⇒
(

K(φ∧ψ)→ K(Kφ∧Kψ)
) L.1,R1

=⇒
(

K(φ ∧ ψ)→ KK(φ ∧ ψ)
)

.

(A5) It follows from A1 and Lemma 1 that
(

¬K(φ ∧ ψ) → (¬Kφ ∨ ¬Kψ)
)

. Hence,
(

¬K(φ ∧ ψ) → (¬Kφ ∨ ¬Kψ)
) A5,R1

=⇒
(

¬K(φ ∧ ψ) → (K¬Kφ ∨K¬Kψ)
) A2,R1

=⇒
(

¬K(φ ∧
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ψ) → K(¬Kφ ∨ ¬Kψ)
) A1,A2,R1

=⇒
(

¬K(φ ∧ ψ) → K¬(Kφ ∧ Kψ)
) L.1,R1

=⇒
(

¬K(φ ∧ ψ) →

K¬K(φ ∧ ψ)
)

.

Lemma 4. K(Kφ ∨ ψ)↔ (Kφ ∨Kψ) is a theorem in S5({φ, ψ}).

Proof. (←) : The agent assumes A4 for φ. Hence,
(

(Kφ∨Kψ)→ (KKφ∨Kψ)
) A2,L.1,R1

=⇒
(

(Kφ ∨Kψ)→ K(Kφ ∨ ψ)
)

.

(→) : The agent assumes A1. Therefore,
(

K(Kφ∨ψ)→ K(¬Kφ→ ψ)
) A2,R1

=⇒
(

K(Kφ∨

ψ) → (K¬Kφ → Kψ)
) A1=⇒

(

K(Kφ ∨ ψ) → (¬K¬Kφ ∨ Kψ)
) A1,A5,R1

=⇒
(

K(Kφ ∨ ψ) →

(Kφ ∨Kψ)
)

.

Remark 2. Aumann (1999) obtained the same conclusion as in Lemma 4, having assumed

the Truth axiom for Kφ ∨ ψ, which is not assumed here. ⊳

Lemma 5. A3 −A5 for Kφ ∨ ψ and ¬Kφ ∨ ψ are theorems in S5({φ, ψ}).

Proof. (A3 for Kφ∨ψ) : It follows from Lemma 4 that the agent has provenK(Kφ∨ψ)→

(Kφ ∨Kψ), implying
(

K(Kφ ∨ ψ)→ (Kφ ∨Kψ)
) A3,R1

=⇒
(

K(Kφ ∨ ψ)→ (Kφ ∨ ψ)
)

.

(A3 for ¬Kφ ∨ ψ) : The agent assumes A5 for φ, implying
(

(¬Kφ ∨ ψ) → (K¬Kφ ∨

ψ)
) R2=⇒ K

(

(¬Kφ ∨ ψ)→ (K¬Kφ ∨ ψ)
) A2,R1

=⇒
(

K(¬Kφ ∨ ψ)→ K(K¬Kφ ∨ ψ)
) L.2,L.4,R1

=⇒
(

K(¬Kφ ∨ ψ)→ (K¬Kφ ∨Kψ)
) L.2,R1

=⇒ K(¬Kφ ∨ ψ)→ (¬Kφ ∨ ψ).

(A4 for Kφ ∨ ψ) : It follows from Lemma 4 that the agent has proven K(Kφ ∨ ψ)→

(Kφ ∨ Kψ), implying
(

K(Kφ ∨ ψ) → (Kφ ∨ Kψ)
) L.2,RI=⇒

(

K(Kφ ∨ ψ) → (KKKφ ∨

KKψ)
) A2,R1,L.1

=⇒
(

K(Kφ∨ψ)→ K(KKφ∨Kψ)
) A2,R1,L.1

=⇒
(

K(Kφ∨ψ)→ KK(Kφ∨ψ)
)

.

(A4 for ¬Kφ ∨ ψ) : The agent assumes A5 for φ, implying
(

(¬Kφ ∨ ψ) → (K¬Kφ ∨

ψ)
) R2=⇒ K

(

(¬Kφ ∨ ψ)→ (K¬Kφ ∨ ψ)
) A2,R1

=⇒
(

K(¬Kφ ∨ ψ)→ K(K¬Kφ ∨ ψ)
) L.2,L.4,R1

=⇒
(

K(¬Kφ ∨ ψ) → (K¬Kφ ∨ Kψ)
) L.2,R1

=⇒ K(¬Kφ ∨ ψ) → (KK¬Kφ ∨ KKψ)
A2,R1,L.1
=⇒

K(¬Kφ ∨ ψ)→ K(K¬Kφ ∨Kψ)
A2,R1,L.1
=⇒ K(¬Kφ ∨ ψ)→ KK(¬Kφ ∨ ψ).

(A5 for Kφ ∨ ψ) : It follows from Lemma 4 that the agent has proven (Kφ ∨Kψ)→

K(Kφ∨ψ), implying
(

(Kφ∨Kψ)→ K(Kφ∨ψ)
) A1,R1

=⇒
(

¬K(Kφ∨ψ)→ ¬(Kφ∨Kψ)
) A1,R1

=⇒
(

¬K(Kφ ∨ ψ) → (¬Kφ ∧ ¬Kψ)
) A5,R1

=⇒
(

¬K(Kφ ∨ ψ) → (K¬Kφ ∧ K¬Kψ)
) L.1,R1

=⇒
(

¬K(Kφ ∨ ψ)→ K(¬Kφ ∧ ¬Kψ)
) L.4,A1,A2,R1

=⇒
(

¬K(Kφ ∨ ψ)→ K¬K(Kφ ∨ ψ)
)

.

(A5 for ¬Kφ ∨ ψ) : It follows from Lemma 4 that the agent has proven (K¬Kφ ∨

Kψ) → K(K¬Kφ ∨ ψ). Hence,
(

(K¬Kφ ∨ Kψ) → K(K¬Kφ ∨ ψ)
) L.2,R1

=⇒
(

(K¬Kφ ∨

Kψ)→ K(¬Kφ∨ψ)
) A1,R1

=⇒
(

¬K(¬Kφ∨ψ)→ ¬(K¬Kφ∨Kψ)
) A1,R1

=⇒
(

¬K(¬Kφ∨ψ)→

(¬K¬Kφ ∧ ¬Kψ)
) L.2,R1

=⇒
(

¬K(¬Kφ ∨ ψ) → (K¬K¬Kφ ∧K¬Kψ)
) L.1,R1

=⇒
(

¬K(¬Kφ ∨

ψ)→ K(¬K¬Kφ∧¬Kψ)
) A1,R1

=⇒
(

¬K(¬Kφ∨ψ) → K¬(K¬Kφ∨Kψ)
) L.4,R1

=⇒
(

¬K(¬Kφ∨

ψ)→ K¬K(K¬Kφ ∨ ψ)
) L.2,R1

=⇒
(

¬K(¬Kφ ∨ ψ)→ K¬K(¬Kφ ∨ ψ)
)

.
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Proof of Main Theorem. We recursively define Ψn := L0({φ,Kφ | φ ∈ Ψn−1}) as the

closure of {φ,Kφ | φ ∈ Φn−1} with respect to ¬ and ∧, with Ψ0 := L
0(Φ) being the set of

non-epistemic propositions. It follows directly from Lemmata 2, 3 and 5 that A3−A5 for

any proposition in Ψn are theorems in S5(Ψn−1), implying that the theorems in S5(Ψn)

and those in S5(Ψn−1) coincide. Therefore, every ML system S5(Ψn) induces the same

theorems as S50. Finally, notice that L(Φ) =
⋃

n≥0
Ψn, which completes the proof.

3 Discussion

3.1 Partitional information structures

The standard modal logic system S5 is syntactic, in that it considers propositions

and a knowledge operator. In order to make the connection between S5 (or S50) and

partitional information, one needs to introduce a semantic model, given by states of the

world.

The bridge between semantic and syntactic models consists of Kripke structures (Kripke,

1959), given as tuples M = (Ω, π,K); Ω is the set of states of nature; π : Ω× Φ→ {0, 1}

is a function assigning a truth value to every primitive proposition, i.e., π(ω, p) = 1 if

and only if p is true at ω; K : Ω→ 2Ω \ {∅} determines a binary relationship on Ω, often

called the agent’s possibility correspondence, i.e., ω′ ∈ K(ω) means that the agent deems

the state ω′ possible while being at ω. We write (M,ω) � φ whenever φ is true at ω in

the Kripke structure M . Truth is defined inductively in M at every state as follows:

(M,ω) � p for each p ∈ Φ if and only if π(ω, p) = 1

(M,ω) � φ if and only if (M,ω) 2 ¬φ

(M,ω) � φ ∧ ψ if and only if (M,ω) � φ and (M,ω) � ψ

(M,ω) � Kφ if and only if (M,ω′) � φ for all ω′ ∈ K(ω)

Recall that M is reflexive whenever ω ∈ K(ω) for all ω ∈ Ω; it is transitive whenever

for all ω, ω′ ∈ Ω, if ω′ ∈ K(ω) then K(ω′) ⊆ K(ω); finally, it is Euclidean whenever for all

ω, ω′ ∈ Ω, if ω′ ∈ K(ω) then K(ω′) ⊇ K(ω). Partitional information structures correspond

to Kripke structures that are reflexive, transitive and Euclidian.

A proposition φ is a tautology in M , and we write M � φ, whenever (M,ω) � φ for

all ω ∈ Ω. It is valid in a class of Kripke structuresM, and we writeM � φ, whenever

φ is a tautology in every M ∈M.
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A modal logic system is a sound axiomatization of a class of Kripke structures M

whenever every theorem in this ML system is a valid proposition in M. A modal logic

system is a complete axiomatization ofM whenever every valid proposition inM is a the-

orem in the ML system. It is well known that S5 is a sound and complete axiomatization

of partitional Kripke structures (Fagin et al., 1995, Ch. 3).

It immediately follows from our Main Theorem that S50 is also a sound and complete

axiomatization of partitional Kripke structures.

3.2 Tightness of the result

We show that truth and introspection for the non-epistemic propositions are indispens-

able axioms, i.e., A3−A5 cannot be proven only from A0−A2, using semantic models as

introduced in the previous subsection.

Suppose, for instance, that there is a unique atomic proposition, Φ = {p}, and consider

a Kripke structureM such that Ω = {ω, ω′}, with π(ω, p) = 1 and π(ω′, p) = 0. Moreover,

let K(ω) = {ω} and K(ω′) = {ω, ω′}. It is known that M belongs to the class of Kripke

structures which are axiomatized by A1 − A4 together with the inference rules R1 −

R2 (Fagin et al., 1995). Therefore, ¬Kp → K¬Kp cannot be proven in M , implying

that without assuming introspection for the non-epistemic propositions, we may obtain a

strictly coarser set of theorems compared to S5.

Likewise, unless the truth axiom is assumed for the non-epistemic propositions, it

cannot be proven by the remaining axioms. Consider, for instance, the following Kripke

structure, M ′, such that Ω = {ω, ω′}, with π(ω, p) = 1 and π(ω′, p) = 0, and K(ω) = {ω′}

and K(ω′) = {ω}. It is known that M ′ belongs to the class of Kripke structures which

are axiomatized by A0 −A2, A4 −A5 together with the inference rules R1−R2 (Fagin et

al., 1995), implying that ¬Kp→ p cannot be proven in M ′.

3.3 Interactive knowledge

Let us extend our analysis to a framework with multiple agents {1, ..., n}, with typical

elements i and j. Consider a separate knowledge modality Ki for every i ∈ {1, ..., n},

implying that the set of all propositions, denoted by Ln(Φ), now becomes the closure of

Φ with respect to ¬, ∧ and K1, ..., Kn, i.e., the language is enriched in order to contain

propositions of the form “j knows that i knows p”.

The ML system, S5n, extends S5 to a multi-agent environment in a way such that all
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agents assume the basic axioms, e.g., Kiφ → φ is assumed for every i ∈ {1, ..., n}. The

set of theorems1 in S5n is denoted by T5n.

Recall the definition of the non-epistemic propositions in the single-agent framework:

It is the set of sentences that do not contain any knowledge operator. Extending this

definition to the multi-agent framework should be done with caution, e.g., consider the

proposition “j knows that i knows p”: From j’s point of view, KjKip is epistemic, as it

describes j’s knowledge; on the other hand, KjKip is a non-epistemic proposition in i’s

language as it describes j’s mental state, even though the latter refers to i’s knowledge.

Hence, from i’s point of view any proposition starting with Kj is non-epistemic.

Formally, we define the set of non-epistemic propositions in i’s language

L0

i (Φ) := L
0

(

⋃

j 6=i

{

Kjφ | φ ∈ L(Φ)
}

∪ Φ
)

as the closure of
⋃

j 6=i{Kjφ | φ ∈ L(Φ)}∪Φ with respect to ¬ and ∧. Obviously, when i is

the only agent, it follows that L0

i (Φ) = L
0(Φ), implying that our generalized definition of

non-epistemic propositions in the multi-agent environment is consistent with the single-

agent case presented in the previous section.

Let S50n be the multi-agent generalization of S50:

A1. All tautologies of propositional calculus

A2.
(

Kiφ ∧Ki(φ→ ψ)
)

→ Kiψ

A3. Kiφ→ φ, for all φ ∈ L0

i (Φ)

A4. Kiφ→ KiKiφ, for all φ ∈ L0
i (Φ)

A5. ¬Kiφ→ Ki¬Kiφ, for all φ ∈ L0

i (Φ)

R1. From φ and (φ→ ψ) infer ψ

R2. From φ infer Kiφ

Let T 0

5n denote the theorems in S50n.

Proposition 1. T5n = T 0

5n.

1It is known that S5n is a sound and complete axiomatization of the class of multi-agent partitional
Kripke structures (Ω, π,K1, ...,Kn) (Fagin et al., 1995, Ch. 3).
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Proof. Observe that L(Φ) coincides with the closure of L0
i (Φ) with respect to ¬, ∧ and

Ki. Moreover, similarly to the Main Theorem, we show that i can prove A3 − A5 for

all propositions in the closure of L0
i (Φ) with respect to ¬, ∧ and Ki, and therefore i can

prove A3−A5 for all propositions in L(Φ). Likewise, for every individual which completes

the proof.

It follows directly, from the previous result, that S50n is a sound and complete axiom-

atization of the class of multi-agent partitional Kripke structures.

Notice that in order to prove A3−A5 for all propositions it does not suffice to assume

the truth axiom and introspection only for L0(Φ), e.g., even if j assumes (Kiφ → φ),

he cannot prove (KjKiφ → Kiφ). The reason is that, from j’s point of view, Kiφ is a

non-epistemic proposition, and therefore j cannot infer the truth axiom for Kiφ.
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