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Let �xn�n be a process with values in a finite set X and law P , and let yn = f �xn� be a function of the process. At stage n,
the conditional distribution pn = P�xn � x1� � � � �xn−1�, element of 	 = 
�X�, is the belief that a perfect observer, who
observes the process online, holds on its realization at stage n. A statistician observing the signals y1� � � � �yn holds a belief
en = P�pn � x1� � � � �xn� ∈ 
�	� on the possible predictions of the perfect observer. Given X and f , we characterize the set
of limits of expected empirical distributions of the process �en� when P ranges over all possible laws of �xn�n.
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1. Introduction. We study the gap in predictions made by agents that observe different signals about some
process �xn�n with values in a finite set X and law P . Assume that a perfect observer observes �xn�n, and a
statistician observes a function yn = f �xn�. At stage n, pn = P�xn � x1� � � � �xn−1�, element of 	=
�X� the set
of probabilities on X, is the prediction that a perfect observer of the process makes on its next realization. To a
sequence of signals y1� � � � �yn corresponds a belief en = P�pn � y1� � � � �yn−1� that the statistician holds on the
possible predictions of the perfect observer. The information gap about the future realization of the process at
stage n between the perfect observer and the statistician is seen in the fact that the perfect observer knows pn,
whereas the statistician knows only the law en of pn conditional to y1� � � � �yn−1.
We study the possible limits of expected empirical distributions of the process �en� when P ranges over all

possible laws of �xn�n.
We call experiments the elements of E = 
�	� and experiment distributions the elements of 
�E�. We say

that an experiment distribution � is achievable if there is a law P of the process for which � is the limiting
expected empirical distributions of �en�. To an experiment e, we associate a random variable p with values in 	
and with law e. Let x be a random variable with values in X such that, conditional on the realization p of p,
x has law p. Let then y= f �x�. We define the entropy variation associated to e as


H�e�=H�p�x�y�−H�p�=H�x�p�−H�y��

This mapping measures the evolution of the uncertainty for the statistician on the predictions of the perfect
observer.
Our main result is that an experiment distribution � is achievable if and only if E��
H�≥ 0.
This result has applications both to statistical problems and to game-theoretic ones.
Given a process �xn� with law P , consider a repeated decision problem, where at each stage an agent has to

take a decision and gets a stage payoff, depending on his action and the realization of the process at that stage.
We compare the optimal payoff for an agent observing the process online and for an agent observing only the
process of signals. At each stage, each agent maximizes his conditional expected payoff given his information.
His expected payoff at stage n thus writes as a function of the beliefs he holds at stage n−1 on the next stage’s
realization of the process. Then, the expected payoff at stage n to each agent conditional to the past signals
of the statistician—the agent with least information—is a function of en. Both long-run expected payoffs are
thus functions of the long-run expected empirical distribution of the process �en�. Our result allows to derive
characterizations of the maximal value of information in repeated decision problems measured as the maximal
(under possible laws P of the process) difference of long-run average expected payoffs between the perfect
observer and the statistician in a given decision problem.
Information asymmetries in repeated interactions is also a recurrent phenomenon in game theory, and arise in

particular when agents observe private signals, or have limited information processing abilities.
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In a repeated game with private signals, each player observes at each stage of the game a signal that depends
on the action profile of all the players. While public equilibria of these games (see, e.g., Abreu et al. [1]
and Fudenberg et al. [8]) or equilibria in which a communication mechanism serves to resolve information
asymmetries (see, e.g., Compte [6], Kandori and Matsushima [17], and Renault and Tomala [27]) are well
characterized, endogenous correlation and endogenous communication give rise to difficult questions that have
only been tackled for particular classes of signalling structures (see Lehrer [20], Renault and Tomala [26], and
Gossner and Vieille [15]).
Consider a repeated game in which a team of players 1� � � � �N − 1 with action sets A1� � � � �AN−1 tries to

minimize the payoff of player N . Let X = A1 × · · · × AN−1. Assume that each player of the team perfectly
observes the actions played, whereas player N only observes a signal on the team’s actions given by a map
f defined on X. A strategy � for the team that doesn’t depend on player N ’s actions induces a process over
X with law P� , and the maximal payoff at stage n to player N given his history of signals is a function of
the experiment en, i.e., of player N ’s beliefs on the distribution of joint actions of other players at stage n.
Hence the average maximal payoff to player N against such a strategy for the team is a function of the induced
experiment distribution. Note, however, that the team is restricted in the choice of P� , since the actions of all
the players must be independent conditional on the past play. This paper also provides a characterization of
achievable experiment distributions when the transitions of the process P are restricted to belong to a closed set
of probabilities C. This characterization can be used to characterize the minimax values in classes of repeated
games with imperfect monitoring (see Gossner and Tomala [14]). Gossner et al. [13] elaborate techniques for
the computation of explicit solutions and fully analyse an example of game with imperfect monitoring. Another
example is studied by Goldberg [9].
Information asymmetries also arise in repeated games when agents have different information processing

abilities: some players may be able to predict more accurately future actions than others. These phenomena
have been studied in the frameworks of finite automata (see Ben Porath [3], Neyman [22], [23], Gossner and
Hernández [12], Bavly and Neyman [2], and Lacôte and Thurin [18]), bounded recall (see Lehrer [19], [21],
Piccione and Rubinstein [25], Bavly and Neyman [2], and Lacôte and Thurin [18]), and time-constrained Turing
machines (see Gossner [10], [11]). We hope the characterizations derived in this paper may provide a useful
tool for the study of repeated games with boundedly rational agents.
The next section presents the model and the main results, while the remainder of this paper is devoted to the

proof of our theorem.

2. Definitions and main results.

2.1. Notations. For a finite set S, �S� denotes its cardinality.
For a compact set S, 
�S� denotes the set of Borel regular probability measures on S and is endowed with

the weak-∗ topology (thus 
�S� is compact).
If �x�y� is a pair of finite random variables—i.e., with finite range—defined on a probability space ���� � P�,

P�x�y� denotes the conditional distribution of x given �y = y� and P�x�y� is the random variable with value
P�x�y� if y= y.
Given a set S and x in S, the Dirac measure on x is denoted �x: this is the probability measure with

support �x�.
If x is a random variable with values in a compact subset of a topological vector space V , E�x� denotes the

barycenter of x and is the element of V such that for each continuous linear form �, E���x��= ��E�x��.
If p and q are probability measures on two probability spaces, p⊗ q denotes the product probability.

2.2. Definitions.

2.2.1. Processes and distributions. Let �xn�n be a process with values in a finite set X such that �X� ≥ 2
and let P be its law. A statistician observes the value of yn = f �xn� at each stage n, where f � X → Y is a
fixed mapping. Before stage n, the history of the process is x1� � � � � xn−1 and the the history available to the
statistician is y1� � � � � yn−1. The conditional law of xn given the history of the process is

pn�x1� � � � � xn−1�= P�xn�x1� � � � � xn−1��

This defines a �x1� � � � �xn−1�-measurable random variable pn with values in 	=
�X�. The statistician holds a
belief on the value of pn. For each history y1� � � � � yn−1, we let en�y1� � � � � yn−1� be the conditional law of pn
given y1� � � � � yn−1:

en�y1� � � � � yn−1�= P�pn�y1� � � � � yn−1��
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i.e., for each ! ∈ 	� en�y1� � � � � yn−1��!� = P��pn = !�y1� � � � � yn��. This defines a �y1� � � � �yn−1�-measurable
random variable en with values in E = 
�	�. Following Blackwell [4], [5], we call experiments the elements
of E.
The empirical distribution of experiments up to stage n is

dn�y1� � � � � yn−1�= 1
n

∑
m≤n

�em�y1� � � � �ym−1��

So for each e ∈E, dn�y1� � � � � yn−1��e� is the average number of times 1≤m≤ n such that em�y1� � � � � ym−1�= e.
The �y1� � � � �yn−1�-measurable random variable dn has values in D = 
�E�. We call D the set of experiment
distributions.
Definition 2.1. We say that the law P of the process n-achieves the experiment distribution � if EP �dn�= �,

and that � is n-achievable if there exists P that n-achieves �. Dn denotes the set of n-achievable experiment
distributions.
We say that the law P of the process achieves the experiment distribution � if limn→+� EP �dn�= �, and that

� is achievable if there exists P that achieves �. D� denotes the set of achievable experiment distributions.
Achievable distributions have the following properties:

Proposition 2.1. (i) For n�m≥ 1, n
n+m

Dn + m
n+m

Dm ⊂Dm+n.
(ii) Dn ⊂D�.
(iii) D� is the closure of

⋃
n Dn.

(iv) D� is convex and closed.

Proof. To prove (i) and (ii), let Pn and P ′
m be the laws of processes x1� � � � �xn and x′

1� � � � �x
′
m such that

Pn n-achieves �n ∈ Dn and P ′
m m-achieves �′

m ∈ Dm. Then, any process of law Pn ⊗ P ′
m �n + m�-achieves

n
n+m

�n + m
n+m

�′
m ∈ Dm+n, and any process of law Pn ⊗ Pn ⊗ Pn ⊗ � � � achieves �n ∈ D�. Point (iii) is a direct

consequence of the definitions and of (ii). Point (iv) follows from (i) and (iii). �

Example 2.1. Assume f is constant, let �xn�n be the the process on �0�1� such that �x2n−1�n≤1 are
i.i.d. uniformly distributed and x2n = x2n−1. At odd stages e2n−1 = �� 12 �

1
2 �
a.s. and at even stages e2n = 1

2��1�0� +
1
2��0�1� a.s. Hence the law of �xn�n achieves the experiment distribution

1
2�e1 + 1

2�e2 .
Example 2.2. Assume again f constant, a parameter p is drawn uniformly in $0�1%, and �xn�n is a family of

i.i.d. Bernoulli random variables with parameter p. In this case, pn → p a.s., and therefore en weak-∗ converges
to the uniform distribution on $0�1%. The experiment distribution achieved by the law of this process is thus the
Dirac measure on the uniform distribution on $0�1%.

2.2.2. Measures of uncertainty. Let x be a finite random variable with values in X and law P . Throughout
this paper, log denotes the logarithm with base 2. By definition, the entropy of x is

H�x�= −E logP�x�= −∑
x

P�x� logP�x��

where 0 log0 = 0 by convention. Note that H�x� is nonnegative and depends only on the law P of x and we
shall also denote it H�P�.
Let �x�y� be a couple of finite random variables with joint law P . The conditional entropy of x given �y= y�

is the entropy of the conditional distribution P�x�y�:
H�x�y�= −E$logP�x�y�%�

The conditional entropy of x given y is the expected value of the previous

H�x�y�=∑
y

H�x�y�P�y��

One has the following additivity formula:

H�x�y�=H�y�+H�x�y��
Given an experiment e, let p be a random variable in 	 with distribution e, x be a random variable in X

such that the conditional distribution of x given �p= p� is equal to p and y = f �x�. Note that since x is finite
and since the conditional distribution of x given �p = p� is well defined, we can extend the definition of the
conditional entropy by letting H�x�y�= ∫

H�p�de�p�.
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Definition 2.2. The entropy variation associated to e is


H�e�=H�x�p�−H�y��

Remark 2.1. Assume that e has finite support (hence the associated random variable p also has finite
support). From the additivity formula

H�p�x�=H�p�+H�x�p�=H�y�+H�p�x�y��
Therefore 
H�e�=H�p�x�y�−H�p�.
The mapping 
H measures the evolution of the uncertainty of the statistician at a given stage. Fix a history of

signals y1� � � � � yn−1, consider the experiment e= en�y1� � � � � yn−1�, and let p= pn� e is the conditional law of p
given the history of signals. Set also x = xn and y= yn. The evolution of the process and of the information of
the statistician at stage n is described by the following procedure:

• Draw p according to e;
• If p= p, draw x according to p;
• Announce y= f �x� to the statistician.
The uncertainty—measured by entropy—for the statistician at the beginning of the procedure is H�p�. At the

end of the procedure, the statistician knows the value of y and p�x are unknown to him, the new uncertainty is
thus H�p�x�y�. 
H�e� is therefore the variation of entropy across this procedure. It also writes as the difference
between the entropy added to p by the procedure: H�x�p�, and the entropy of the information gained by the
statistician: H�y�.

Lemma 2.1. The mapping 
H� E →� is continuous.

Proof. H�x�p� = ∫
H�p�de�p� is linear continuous in e, since H is continuous on 	. The mapping that

associates to e the law of y is also linear continuous. �

2.3. Main results. We characterize achievable distributions.

Theorem 2.1. An experiment distribution � is achievable if and only if E��
H�≥ 0.

We also prove a stronger version of the previous theorem in which the transitions of the process are restricted
to belong to an arbitrary subset of 	.
Definition 2.3. The distribution � ∈D has support in C ⊂	 if for each e in the support of �, the support

of e is included in C.
Definition 2.4. Given C⊂	 a process �xn�n with law P is a C-process if for each n, P�xn�x1�� � � �xn−1�∈C,

P -almost surely.
Remark 2.2. If P is the law of a C-process and P achieves �, then � has support in C. This observation

follows readily from the previous definitions.

Theorem 2.2. Let C be a closed subset of 	. The experiment distribution � is achievable by the law of a
C-process if and only if � has support in C and E��
H�≥ 0.

Remark 2.3. If C is closed, the set of experiment distributions that are achievable by laws of C-processes
is convex and closed. The proof is identical as for D�, so we omit it.

2.4. Trivial observation. We say that the observation is trivial when f is constant.

Lemma 2.2. If the observation is trivial, any � is achievable.

This fact can easily be deduced from Theorem 2.1. Since f is constant, H�y� = 0 and thus 
H�e� ≥ 0 for
each e ∈E. However, a simple construction provides a direct proof in this case.
Proof. By closedness and convexity, it is enough to prove that any �= �e with e of finite support is achiev-

able. Let thus e = ∑
k (k�pk . Again by closedness, assume that the (ks are rational with common denominator

2n for some n. Let x �= x′ be two distinct points in X and x1� � � � �xn be i.i.d. with law
1
2�x + 1

2�x′ , so that
�x1� � � � �xn� is uniform on a set with 2n elements. Map �x1� � � � �xn� to some random variable k such that
P�k = k� = (k. Construct then the law P of the process such that conditional on k = k, xt+n has law pk for
t ≥ 1. P achieves �.

2.5. Perfect observation. We say that information is perfect when f is one to one. Let Ed denote the set of
Dirac experiments, i.e., measures on 	 whose support are a singleton. This set is a weak-∗ closed subset of E.



Gossner and Tomala: Empirical Distributions of Beliefs Under Imperfect Observation
Mathematics of Operations Research 31(1), pp. 13–30, © 2006 INFORMS 17

Lemma 2.3. If information is perfect, � is achievable if and only if supp�⊂Ed.

We derive this result from Theorem 2.1.
Proof. If e ∈ Ed, the random variable p associated to e is constant a.s., therefore H�x�p� = H�x� = H�y�

since observation is perfect. Thus 
H�e�= 0, and E��
H�= 0 if supp�⊂Ed. Conversely, assume E��
H�≥ 0.
Since the observation is perfect, H�y�=H�x�≥H�x�p�, and thus 
H�e�≤ 0 for all e. So, 
H�e�= 0 �-almost
surely, i.e., H�x�p�=H�x� for each e in a set of �-probability one. For each such e, x and p are independent,
i.e., the law of x given p= p does not depend on p. Hence e is a Dirac measure.

2.6. Example of a nonachievable experiment distribution.
Example 2.3. Let X = �i� j� k� and f �i�= f �j� �= f �k�. Consider distributions of the type �= �e.
If e= � 1

2 �j+ 1
2 �k
, � is achievable. Indeed, such � is induced by an i.i.d. process with stage law 1

2�j + 1
2�k.

On the other hand, if e = 1
2��j + 1

2��k , under e the law of x conditional on p is a Dirac measure and thus
H�x�p�= 0, whereas the law of y is the one of a fair coin and H�y�= 1. Thus E��
H�=
H�e� < 0 and from
Theorem 2.1, � is not achievable.
The intuition is as follows: if � were achievable by P , only j and k would appear with positive density P -a.s.

Since f �j� �= f �k�, the statistician can reconstruct the history of the process given his signals, and therefore
correctly guess P�xn�x1� � � � � xn−1�. This contradicts e= 1

2��j + 1
2��k , which means that at almost each stage, the

statistician is uncertain about P�xn�x1� � � � � xn−1� and attributes probability
1
2 to �j and probability

1
2 to �k.

3. Reduction of the problem. The core of our proof is to establish the next proposition.

Proposition 3.1. Let � = (�e + �1− (��e′ , where ( is rational, e� e′ have finite support, and (
H�e� +
�1−(�
H�e′� > 0. Let C = supp e∪ supp e′. Then, � is achievable by the law of a C-process.

Sections 4–7 are devoted to the proof of this proposition. We now prove Theorem 2.2 from Proposition 3.1.
Theorem 2.1 is a direct consequence of Theorem 2.2 with C =	.

3.1. The condition E�
H ≥ 0 is necessary. We prove now that any achievable � must verify E�
H ≥ 0.
Proof. Let � be achieved by P . Recall that en is a �y1� � � � �yn−1�-measurable random variable with values

in E. 
H�en� is thus a �y1� � � � �yn−1�-measurable real-valued random variable and from the definitions


H�em�y1� � � � � ym−1��=H�pm�xm�y1� � � � � ym�−H�pm�y1� � � � � ym−1�

Thus

EP
H�em� = H�pm�xm�y1� � � � �ym�−H�pm�y1� � � � �ym−1�

= H�xm�pm�y1� � � � �ym−1�−H�ym�y1� � � � �ym−1��

Setting for each m, Hm =H�x1� � � � �xm�y1� � � � �ym�, we wish to prove that EP
H�em�=Hm −Hm−1. To do
this, we apply the additivity formula to the quantity

�H� =H�x1� � � � �xm�ym�pm�y1� � � � �ym−1�

in two different ways. First,

�H = Hm−1 +H�xm�ym�pm�x1� � � � �xm−1�y1� � � � �ym−1�

= Hm−1 +H�xm�pm�
where the second equality holds since ym is a deterministic function of xm, pm is x1� � � � �xm−1 measurable and
the law of xm depends on pm only. Secondly,

�H = H�ym�y1� � � � �ym−1�+H�x1� � � � �xm�pm�y1� � � � �ym�
= H�ym�y1� � � � �ym−1�+Hm�

where the second equality holds since again, pm is x1� � � � �xm−1 measurable. It follows:

EP
H�em�=Hm −Hm−1�
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and thus ∑
m≤n

EP
H�em�=H�x1� � � � �xn�y1� � � � �yn�≥ 0�

From the definitions
E��
H�= lim

n

1
n

∑
m≤n

EP
H�en��

which gives the result. �

3.2. C-perfect observation. To prove that E�
H ≥ 0 is a sufficient condition for � to be achievable, we first
need to study the case of perfect observation in details.
Definition 3.1. Let C be a closed subset of 	. The mapping f is C-perfect if for each p in C, f is one to

one on suppp.
We let EC�d = ��p�p ∈C� be the set of Dirac experiments with support in C. EC�d is a weak-∗ closed subset

of E and �� ∈D� supp�⊂EC�d� is a weak-∗ closed and convex subset of D.
Lemma 3.1. If f is C-perfect, then the following 3 assertions are equivalent:
(i) The experiment distribution � is achievable by the law of a C-process.
(ii) supp�⊂EC�d.
(iii) E��
H�= 0.

Proof. Point (1) ⇔ Point (2). Let �xn� be a C-process P , � achieved by P , and p1 be the law of x1. Since
f is one to one on suppp1, the experiment e2�y1� is the Dirac measure on p2 = P�x2�x1�. By induction, assume
that the experiment en�y1� � � � � yn−1� is the Dirac measure on pn = P�xn�x1� � � � � xn−1�. Since f is one to one on
supppn, yn reveals the value of xn and en+1�y1� � � � � yn� is the Dirac measure on P�xn�x1� � � � � xn�. We get that
under P , at each stage the experiment belongs to EC�d P -a.s., and thus supp�⊂EC�d.
Conversely, let � be such that supp�⊂EC�d. Since the set of achievable distribution is closed, it is sufficient to

prove that for any p1� � � � � pk in C, n1� � � � � nk integers, n=∑
j nj , �=∑

j �nj/n��ej is feasible where ej = �pj .
But then, Pn = p

⊗n1
1 p

⊗n2
2 · · ·p⊗nk

k n-achieves �.
Point (2) ⇔ Point (3). If e ∈EC�d, the random variable p associated to e is constant a.s., therefore H�x�p�=

H�x�=H�y� since f is C-perfect. Thus 
H�e�= 0, and therefore E��
H�= 0 whenever supp�⊂EC�d.
Conversely, assume E��
H�= 0. Since f is C-perfect, for each e with support in C, H�y�=H�x�≥H�x�p�

implying 
H�e�≤ 0. Thus 
H�e�= 0 �-a.s., i.e., H�x�p�=H�x� for each e in a set of �-probability one. For
each such e, x and p are independent, i.e., the law of x given p= p does not depend on p, hence e is a Dirac
measure. Thus supp�⊂EC�d. �

3.3. The condition E�
H ≥ 0 is sufficient. According to Proposition 3.1, any � = (�e + �1− (��e′ with
( rational, e� e′ of finite support and such that (
H�e� + �1− (�
H�e′� > 0 is achievable by the law of a
C-process with C = supp e∪ supp e′. We apply this result to prove Theorem 2.2.
Proof. [Proof of Theorem 2.2 from Proposition 3.1]. Let C ⊂	 be closed, EC ⊂ E be the set of experi-

ments with support in C, and DC ⊂D be the set of experiment distributions with support in EC . Take � ∈DC

such that E��
H�≥ 0.
Assume first that E��
H�= 0 and that there exists a weak-∗ neighborhood V of � in DC such that for any

/ ∈ V , E/�
H� ≤ 0. For p ∈ C, let 0 = ��p . There exists 0< t < 1 such that �1− t��+ t0 ∈ V , and therefore
E0�
H�≤ 0. Taking x of law p and y= f �x�, E0�
H�=
H��p�=H�x�−H�y�≤ 0. Since H�x�≥H�f �x��,
we obtain H�x�=H�f �x�� for each x of law p ∈C. This implies that f is C-perfect and the theorem holds by
Lemma 3.1.
Otherwise, there is a sequence �n in DC weak-∗ converging to � such that E�n

�
H� > 0. Since the set of
achievable distributions is closed, we assume E��
H� > 0 from now on. The set of distributions with finite
support being dense in DC (see, e.g., Parthasaraty [24, Theorem 6.3, p. 44]), again by closedness we assume

�=∑
j

(j�ej

with ej ∈ EC for each j . Let S be the finite set of distributions ��ej 1 j�. We claim that � can be written as a
convex combination of distributions �k such that

• For each k, E��
H�=E�k
�
H�.

• For each k, �k is the convex combination of two points in S.
This follows from the following lemma of convex analysis.
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Lemma 3.2. Let S be a finite set in a vector space and f be a real-valued affine mapping on coS the con-
vex hull of S. For each x ∈ coS, there exists an integer K, nonnegative numbers (1� � � � � (K summing to one,
coefficients t1� � � � � tK in $0�1%, and points �xk� x

′
k� in S such that

• x =∑
k (k�tkxk + �1− tk�x

′
k�.

• For each k, tkf �xk�+ �1− tk�f �x
′
k�= f �x�.

Proof. Let a= f �x�. The set Sa = �y ∈ coS� f �y�= a� is the intersection of a polytope with a hyperplane.
It is thus convex and compact so by Krein-Milman’s theorem (see, e.g., Rockafellar [28]), it is the convex hull
of its extreme points. An extreme point y of Sa—i.e., a face of dimension 0 of Sa—must lie on a face of coS
of dimension at most 1, and therefore is a convex combination of two points of S. �

We apply Lemma 3.2 to S = ��ej 1 j� and to the affine mapping � �→ E��
H�. Since the set of achievable
distributions is convex, it is enough to prove that for each k, �k is achievable. The problem is thus reduced
to � = (�e + �1− (��e′ such that (
H�e�+ �1− (�
H�e′� > 0. We approximate ( by a rational number and
since C is closed, we may assume that the supports of e and e′ are finite subsets of C. Proposition 3.1 now
applies. �

4. Presentation of the proof of Proposition 3.1. Consider an experiment distribution of the form

�= N

N +M
�e + M

N +M
�e′ �

where e� e′ ∈ E have finite support, N�M are integers such that N
H�e�+M
H�e′� > 0. Under �, e and e′

appear with respective frequencies N
N+M

and M
N+M

. We present the idea of the construction of a process that
achieves �.
Fix some history of signals �y1� � � � � yn� and denote un = �x1� � � � �xn� the (random) past history of the process.

Conditional to �y1� � � � � yn�, un has then law P�un�y1� � � � � yn�.
A first step is to prove that when H�un� is “large enough,” and if the distribution of un is close to a uniform

distribution—we say that un satisfies an asymptotic equipartition property (AEP)—one can map or code, un into
another random variable vn with values in 	n whose law is close to e⊗N (i.e., e i.i.d. N times). This allows to
define the process at stages n+ 1� � � � � n+N as follows: given vn = �pn+1� � � � �pn+N �, define �xn+1� � � � �xn+N �
such that for each t, n+ 1≤ t ≤ n+N , given �pt = p�, xt has conditional law p and is independent of all other
random variables. Defined in this way, the process is such that for each stage between n+ 1 and n+ N , the
belief induced at that stage is close to e.
Consider now the history of signals �y1� � � � � yn� yn+1� � � � � yn+N � up to time n+N , and set un+N = �x1� � � � �

xn+N � the (random) past history of the process with conditional law P�un+N �y1� � � � � yn� yn+1� � � � � yn+N �. We
show that, for a set of large probability of sequences of signals, H�un+N � is close to H�un� + N
H�e� and
un+N also satisfies an AEP. As before, if H�un+N � is “large enough,” one can code un+N into some random
variable vn+N whose law is close to e′⊗M . This allows to define as above the process during stages n+N + 1 to
n+N +M such that the induced beliefs at those stages are close to e′.
Let un+N+M represent the random past history of the process given the signals past signals at stage n+N +M .

Then, for a set of sequences of large probability, H�un+N+M� is close to H�un�+N
H�e�+M
H�e�≥H�un�,
since N
H�e�+M
H�e� > 0 and un+N+M satisfies an AEP. The procedure can in this case be iterated.
The construction of the process begins by an initialization phase, which allows to get a “large” H�un�.
Section 5 presents the construction of the process for one block of stages and establishes bounds on closeness

of probabilities. In §6, we iterate the construction, and show the full construction of the process P . We terminate
the proof by proving the weak-∗ convergence of the experiment distribution to (e+ �1−(�e′ in §7. In this last
part, we first control the Kullback distance between the law of the process of experiments under P and an ideal
law Q= e⊗n ⊗ e′⊗m ⊗ e⊗n ⊗ e′⊗m ⊗ � � � , and finally relate the Kullback distance to weak-∗ convergence.

5. The one block construction.

5.1. Kullback and absolute Kullback distance. For two probability measures with finite support P and Q,
we write P �Q when P is absolutely continuous with respect to Q, i.e., (Q�x�= 0⇒ P�x�= 0).
Definition 5.1. Let K be a finite set and P�Q in 
�K� such that P �Q, the Kullback distance between P

and Q is

d�P ��Q�=EP

[
log

P�·�
Q�·�

]
=∑

k

P�k� log
P�k�

Q�k�
�
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We recall the absolute Kullback distance and its comparison with the Kullback distance from Gossner and Vieille
[16] for later use.
Definition 5.2. Let K be a finite set and P�Q in 
�K� such that P � Q, the absolute Kullback distance

between P and Q is

�d��P ��Q�=EP

∣∣∣∣ log P�·�Q�·�
∣∣∣∣�

Lemma 5.1. For every P�Q in 
�K� such that P �Q,

d�P ��Q�≤ �d� �P ��Q�≤ d�P ��Q�+ 2�

See the proof of (Gossner and Vieille [16, Lemma 17, p. 223]).

5.2. Equipartition properties. We say that a probability P with finite support satisfies an equipartition
property (EP) when all points in the support of P have close probabilities.

Definition 5.3. Let P ∈
�K�, n ∈�, h ∈�+,7 > 0. P satisfies an EP�n�h�7� when

P

{
k ∈K�

∣∣∣∣− 1
n
logP�k�−h

∣∣∣∣≤ 7

}
= 1�

We say that a probability P with finite support satisfies an AEP when all points in a set of large P -measure
have close probabilities.
Definition 5.4. Let P ∈
�K�, n ∈�, h ∈�+, 7�8 > 0. P satisfies an AEP�n�h�7�8� when

P

{
k ∈K�

∣∣∣∣− 1
n
logP�k�−h

∣∣∣∣≤ 7

}
≥ 1− 8�

Remark 5.1. If P satisfies an AEP�n�h�7�8� and m is a positive integer, then P satisfies an AEP�m�
n
m
h� n

m
7�8�.

5.3. Types. Given a set K and in integer n, we denote k̃= �k1� � � � � kn� ∈Kn a finite sequence in K. The type
of k̃ is the empirical distribution 9k̃ induced by k̃; that is, 9k̃ ∈
�K� and ∀k, 9k̃�k�= 1

n
��i= 1� � � � � n� ki = k��.

The type set Tn�9� of 9 ∈
�K� is the subset of Kn of sequences of type 9. Finally, the set of types is �n�K�=
�9 ∈ 
�K��Tn�9� �= ∅�. The following estimates the size of Tn�9� for 9 ∈ �n�K� (see, e.g., Cover and Thomas
[7, Theorem 12.1.3, p. 282]):

2nH�9�

�n+ 1��supp9� ≤ �Tn�9�� ≤ 2nH�9�� (1)

5.4. Distributions induced by experiments and by codifications. Let e ∈ 
�	� be an experiment with
finite support and n be an integer.

Notation 5.1. Let 9�e� be the probability on 	 × X induced by the following procedure: First, draw p
according to e, then draw x according to the realization of p. Let Q�n� e�= 9�e�⊗n.

We approximate Q�n� e� in a construction where �p1� � � � �pn� is measurable with respect to some random
variable l of law P� in an arbitrary set �.

Notation 5.2. Let ��� P�� be a finite probability space and �� � →	n. We denote by P = P�n��� P����
the probability on �×�	×X�n induced by the following procedure: Draw l according to P� , set �p1� � � � �pn�=
��l�, then draw xt according to the realization of pt .
We let �P = �P�n��� P���� be the marginal of P�n��� P���� on �	×X�n.

To iterate such a construction, we relate properties of the “input” probability measure P� with those of the
“output” probability measure P�l�p1� � � � �pn�x1� � � � �xn�y1� � � � �yn�.
Propositions 5.1 and 5.2 exhibit conditions on P� such that there exists � for which �P�n��� P���� is close to

Q�n� e�, and with large probability under P = P�n��� P����, P�l�p1� � � � �pn�x1� � � � �xn�y1� � � � �yn� satisfies
an adequate AEP.
In Proposition 5.1, the condition on P� is an EP property, thus a stronger input property than the output

property, which is stated as an AEP. Proposition 5.2 assumes that P� satisfies an AEP property only.

5.5. EP to AEP codification result. We now state and prove our coding proposition when the input prob-
ability measure P� satisfies an EP.



Gossner and Tomala: Empirical Distributions of Beliefs Under Imperfect Observation
Mathematics of Operations Research 31(1), pp. 13–30, © 2006 INFORMS 21

Proposition 5.1. For each experiment e, there exists a constant U�e� such that for every integer n with
e ∈ �n�	� and for every finite probability space ��� P�� that satisfies an EP�n�h�7� with n�h−H�e�−7�≥ 1,
there exists a mapping �� � →	n such that letting P = P�n��� P���� and �P = �P�n��� P����:
(i) d� �P ��Q�n� e��≤ 2n7+ �supp e� log�n+ 1�+ 1
(ii) For every 0<<< 1, there exists a subset �< of Y n such that

(a) P��<�≥ 1− <
(b) For ỹ ∈�<, P�·�ỹ� satisfies an AEP�n�h′�7′� <�

with h′ = h+
H�e� and 7′ = �U�e�/<2��7+ 1/
√
n�.

Proof. [Proof of Proposition 5.1]. Set 9= 9�e� and �Q=Q�n� e�.
Construction of �: Since P� satisfies an EP�n�h�7�,

2n�h−7� ≤ �suppP� � ≤ 2n�h+7��

From the previous and Equation (1), there exists �� � → Tn�e� such that for every p̃ ∈ Tn�e�,

2n�h−7−H�e�� − 1≤ ��−1�p̃�� ≤ �n+ 1��supp e�2n�h+7−H�e�� + 1� (2)

Bound on d� �P �� �Q�: �P and �Q are probabilities over �	×X�n, which are deduced from their marginals on
	n by the same transition probabilities. It follows from the definition of the Kullback distance that the distance
from �P to �Q equals the distance of their marginals on 	n:

d� �P �� �Q�= ∑
p̃∈Tn�e�

�P�p̃� log �P�p̃�
�Q�p̃� �

Using Equation (2) and the EP for P� , we obtain that for p̃ ∈ Tn�e�:

�P�p̃�≤ �n+ 1��supp e�2n�27−H�e�� + 2−n�h−7��

On the other hand, since for all p̃ ∈ Tn�e�, �Q�p̃�= 2−nH�e�:

�P�p̃�
�Q�p̃� ≤ �n+ 1��supp e�22n7 + 2−n�h−7−H�e���

Part (i) of the proposition now follows since H�e�≤ h−7.
Estimation of �d�� �P�·�ỹ��� �Q�·�ỹ��: For ỹ ∈ Y n s.t. �P�ỹ� > 0, we let �Pỹ and �Qỹ in 
��	×X�n� denote �P�·�ỹ�

and �Q�·�ỹ�, respectively. Direct computation yields∑
ỹ

�P�ỹ�d� �Pỹ�� �Qỹ�≤ d� �P �� �Q��

Hence for =1 > 0:

P�ỹ�d� �Pỹ�� �Qỹ�≥ =1�≤ 2n7+ �supp e� log�n+ 1�+ 1
=1

and from Lemma 5.1,

P�ỹ� �d�� �Pỹ�� �Qỹ�≤ =1 + 2�≥ 1− 2n7+ �supp e� log�n+ 1�+ 1
=1

� (3)

The statistics of �p̃� x̃� under �P : We argue here that the type 9p̃�x̃ ∈
�	×X� of �p̃� x̃� ∈ �	×X�n is close
to 9, with large P -probability. First, note that since � takes its values in Tn�e�, the marginal of 9p̃�x̃ on 	 is e
with P -probability one. For �p�x� ∈	×X, the distribution under P of n9p̃�x̃�p� x� is the one of a sum of ne�p�
independent Bernoulli variables with parameter p�x�. For =2 > 0, the Bienaymé-Chebyshev inequality gives

P��9p̃�x̃�p� x�−9�p�x�� ≥ =2�≤ 9�p�x�

n=22
�

Hence

P��9p̃�x̃ −9�� ≤ =2�≥ 1− 1
n=22

� (4)
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The set of ỹ ∈ Y n s.t. �Qỹ satisfies an AEP has large P -probability: For �p̃� x̃� ỹ�= �pi� xi� yi�i ∈ �	×X×Y �n

s.t. ∀i, f �xi�= yi, we compute

−1
n
logQỹ�p̃� x̃� = −1

n

(∑
i

log9�pi� xi�− log9�yi�
)

= − ∑
�p�x�∈�supp e�×X

9p̃�x̃�p� x� log9�p�x�

+∑
y∈Y

9p̃�x̃�y� log9p̃�x̃�y�

= − ∑
�p�x�

9�p�x� log9�p�x�+∑
y

9�y� log9�y�

+ ∑
�p�x�

�9�p�x�−9p̃�x̃�p� x�� log9�p�x�

−∑
y

�9�y�−9p̃�x̃�y�� log9�y��

Since
− ∑

�p�x�

9�p�x� log9�p�x�=H�9�

and denoting f �9� the image of 9 on Y :∑
y

9�y� log9�y�= −H�f �9��

letting M0 = −2��supp e�×X� log�minp�x 9�p�x��, this implies∣∣∣∣− 1
n
log �Qỹ�p̃� x̃�−H�9�+H�f �9��

∣∣∣∣≤M0�9−9p̃�x̃��� (5)

Define

A=2
=

{
�p̃� x̃� ỹ��

∣∣∣∣− 1
n
log �Qỹ�p̃� x̃�−H�9�+H�f �9��

∣∣∣∣≤M0=2

}
A=2�ỹ

= A=2
∩ ��supp e�×X × �ỹ��� ỹ ∈ Y n�

Equations (4) and (5) yield ∑
ỹ

P �ỹ� �Pỹ�A=2�ỹ
� = P�A=2

�

≥ 1− 1
n=22∑

ỹ

P �ỹ��1− �Pỹ�A=2�ỹ
�� ≤ 1

n=22
�

Then, for >> 0,

P�ỹ�1− �Pỹ�A=2�ỹ
�≥ >�≤ 1

n=22>

and
P�ỹ� �Pỹ�A=2�ỹ

�≥ 1−>�≥ 1− 1
n=22>

� (6)

Definition of �< and verification of ii(a): Set


=1 = 4n7+ 2�supp e� log�n+ 1�+ 2
<

=2 = 2

<
√
n

> = <

2



Gossner and Tomala: Empirical Distributions of Beliefs Under Imperfect Observation
Mathematics of Operations Research 31(1), pp. 13–30, © 2006 INFORMS 23

and let 


�1
< = �ỹ� �d�� �Pỹ�� �Qỹ�≤ =1 + 2�

�2
< = �ỹ� �Pỹ�A=2�ỹ

�≥ 1−>�

�< = �1
< ∩�2

<

�

Equations (3) and (6) and the choice of =1, =2, and > imply

P��<�≥ 1− <�

Verification of ii(b): We first prove that �Pỹ satisfies an AEP for ỹ ∈�<. For such ỹ, the definition of �
1
< and

Markov inequality give

�Pỹ
{
� log �Pỹ�·�− log �Qỹ�·�� ≤ �=1 + 2�

2
<

}
≥ 1− <

2
�

From the definition of �2
< :

�Pỹ
{∣∣∣∣− 1

n
log �Qỹ�·�−H�9�+H�f �9��

∣∣∣∣≤M0=2

}
≥ 1− <

2
�

The two above inequalities yield

�Pỹ
{∣∣∣∣− 1

n
log �Pỹ�·�−H�9�+H�f �9��

∣∣∣∣≤ 2�=1 + 2�
n<

+M0=2

}
≥ 1− <� (7)

Remark now that P�l� p̃� x̃�ỹ�= Pỹ�p̃� x̃�P�l�p̃�. If ��l� �= p̃, P�l�p̃�= 0. Otherwise, P�l�p̃�= P�l�/P�p̃� and
Equation (2) and the EP for P� imply

2n�h−7�

2n�h+7���n+ 1��supp e�2n�h−7−H�e�� + 1�
≤ P�l�

P�p̃�
≤ 2n�h+7�

2n�h−7��2n�h−7−H�e�� − 1�
�

From this, we deduce using n�h−7−H�e��≥ 1:

� logP�l�− logP�p̃�− n�H�e�−h�� ≤ 3n7+ log�n+ 1��supp e� + 1� (8)

Let Pỹ denote P�·�ỹ� over � × �	×X�n. Setting

A �= 37+ log�n+ 1��supp e�
n

+ 1
n

+ 2�=1 + 2�
n<

+M0=2

Equations (7) and (8) imply

Pỹ

{∣∣∣∣− 1
n
logPỹ�·�− �H�9�−H�f �9��−H�e�+h�

∣∣∣∣≤A

}
≥ 1− <�

Using << 1, log�n+ 1�≤ 2
√
n and n≥ √

n we deduce

A≤ 117
<2

+ 10�supp e� + 9+ 2M0√
n<2

�

Since 
H�e�=H�9�−H�e�−H�f �9��, letting U�e�= 19�supp e� + 2M0, Equations (7), (8), and (9) yield

Pỹ

{∣∣∣∣− 1
n
logPỹ�·�− �h+
H�e��

∣∣∣∣≤ U�e�

<2

(
7+ 1√

n

)}
≥ 1− <�

which is the desired AEP. �
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5.6. AEP to AEP codification result. Building on Proposition 5.1, we now can state and prove the version
of our coding result in which the input is an AEP.

Proposition 5.2. For each experiment e, there exists a constant U�e� such that for every integer n with e ∈
�n�	� and for every finite probability space ��� P�� that satisfies an AEP�n�h�7�8� with n�h−H�e�−7�≥
2 and 0 < 8 < 1/212, there exists a mapping �� � → 	n such that letting P = P�n��� P���� and �P =
�P�n��� P����:
(i) d� �P ��Q�n� e��≤ 2n�7+ 8 log �supp e��+ �supp e� log�n+ 1�+ 2
(ii) For every 0<<< 1, there exists a subset �< of Y n such that

(a) P��<�≥ 1− <− 281/4

(b) For ỹ ∈�<, P�·�ỹ� satisfies an AEP�n�h′�7′� 8 ′�
with h′ = h+
H�e�, 7′ = �U�e�/<2��7+ 1/

√
n�+ �4/n�81/12, and 8 ′ = <+ 3

√
8.

We first establish the following lemma.

Lemma 5.2. K is a finite set. Suppose that P ∈ 
�K� satisfies an AEP�n�h�7�8�. Let the typical set of
P be:

C =
{
k ∈K�

∣∣∣∣− 1
n
logP�k�−h

∣∣∣∣≤ 7

}
�

Let PC ∈
�K� be the conditional probability given C: PC�k�= P�k�C�. Then, PC satisfies an EP�n�h�7′� with
7′ = 7+ 2�8/n� for 0< 8 < 1

2 .

Proof. Follows immediately, since for 0< 8 ≤ 1
2 , − log�1− 8�≤ 28. �

Proof. [Proof of Proposition 5.2]. Set again 9 = 9�e� and �Q = Q�n� e�. Let C be the typical set of P� .
From Lemma 5.2, P ′

� = P��·�C� satisfies an EP�n�h�7+ 2�8/n��. Since n�h−H�e�−7�≥ 2, n�h−H�e�−
7 − 2�8/n�� ≥ 1. Applying Proposition 5.1 to e yields: a constant U�e�, a mapping �� C → 	n, an induced
probability P ′ on � × �	×X�n, and subsets �� ′

<�< of Y
n.

Choose p̄ ∈ argmax e�p� and extend � to � by setting it to �p̄� � � � � p̄� outside C. With P ′′ = P��·�C� ⊗
��p̄ ⊗ p̄�⊗n, the probability induced by P� and � on � × �	×X�n is then P = P��C�P

′ + �1− P��C��P
′′. Set

�P as the marginal of P on �	× X�n. To verify point (i), using that the Kullback distance in convex in both
arguments, we write

d� �P� �Q� ≤ P��C�d� �P ′� �Q�+ �1−P��C��nd��p̄ ⊗ p̄�9�
≤ d� �P ′� �Q�+ 8nd��p̄�e�

≤ 2n
(
7+ 28

n

)
+ �supp e� log�n+ 1�+ 1+ 8n log��supp e��

≤ 2n�7+ 8 log �supp e��+ �supp e� log�n+ 1�+ 2�

Let � = �ỹ� P ′�ỹ� > 81/4P ′′�ỹ�� and �< = � ′
< ∩ �. Then, P ′��� ≥ 1 − 81/4 and P ′�� ′

<� ≥ 1 − < so that
P ′�� ′

<�≥ 1− 81/4 − < and P��<�≥ 1− 81/4 − 8 − <≥ 1− <− 281/4, which is point ii(a).
We now prove ii(b). For ỹ ∈ �<, let C�ỹ� be the �n�h′� �U�e�/<2��7 + 1/

√
n�� typical set of P ′�·�ỹ� and

A�ỹ�= ��l� x̃�� P ′�l� x̃ � ỹ� > 82/3P ′′�l� x̃ � ỹ��. Then,

P�C�ỹ�∩A�ỹ� � ỹ� = �P��C�P
′ + �1−P��C��P

′′��C�ỹ�∩A�ỹ��

�P��C�P
′ + �1−P��C��P

′′��ỹ�

≥ �1− 8�P ′�C�ỹ�∩A�ỹ��

�1+ 83/4�P ′�ỹ�

≥ �1− 8 − 83/4�P ′�C�ỹ�∩A�ỹ� � ỹ�
≥ �1− 8 − 83/4��1− <− 82/3�

≥ 1− <− 3
√
8�

where the first inequality uses P ′′��y�≤ 8−1/4P ′�ỹ�, and the third one uses P ′�A�ỹ��ỹ�≥ 1−82/3 and P ′�C�ỹ��ỹ�≥
1− <. This says that C�ỹ�∩A�ỹ� will be the typical set for P�·�ỹ� and fixes the value of 8 ′.
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To estimate the parameter 7′, we evaluate the ratio P�l� x̃ � ỹ�/P ′�l� x̃ � ỹ�. For ỹ ∈�< and �l� x̃� ∈C�ỹ�∩A�ỹ�,
we obtain

P�l� x̃ � ỹ�
P ′�l� x̃ � ỹ� = �P��C�P

′ + �1−P��C��P
′′��l� x̃�

�P��C�P
′ + �1−P��C��P

′′��ỹ�
1

P ′�l� x̃ � ỹ�
≥ �1− 8�P ′�l� x̃�

�1+ 83/4�P ′�ỹ�
1

P ′�l� x̃ � ỹ�
≥ 1− 8 − 83/4

≥ 1− 283/4�

On the other hand,

P�l� x̃ � ỹ�
P ′�l� x̃ � ỹ� = P��C�P

′�l� x̃�+ �1−P��C��P
′′�l� x̃�

P��C�P
′�ỹ��1+ ��1−P��C��/P��C���P

′′�ỹ�/P ′�ỹ���
1

P ′�l� x̃ � ỹ�
≤

(
P ′�l� x̃�
P ′�ỹ�

+ �1−P��C��P
′′�l� x̃�

P��C�P
′�ỹ�

)
1

P ′�l� x̃ � ỹ�
≤ 1+ 8

1− 8

P ′′�l� x̃�
81/4P ′′�ỹ�

1
P ′�l� x̃ � ỹ� ≤ 1+ 8

1− 8

1
81/482/3

≤ 1+ 281/12�

Hence
� logP�l� x̃ � ỹ�− logP ′�l� x̃ � ỹ�� ≤ − log�1− 281/12�≤ 481/12�

Hence the result from ii(b) of Proposition 5.2. �

6. Construction of the process. Taking up the proof of Proposition 3.1, let ( rational, e� e′ having finite
support be such that (
H�e�+ �1− (�
H�e′� > 0 and C = supp e ∪ supp e′. We wish to construct a law P of
a C-process that achieves � = (�e + �1− (��e′ . Again, by closedness of the set of achievable distributions, we
assume w.l.o.g. e ∈ �n0

�C�� e′ ∈ �n0
�C� for some common n0, 0<(< 1, and (= M

M+N
withM�N multiples of n0.

Since (
H�e� + �1 − (�
H�e′� > 0, we assume w.l.o.g. 
H�e� > 0. Remark that for each p ∈ supp e,

H��p�=H�x�p�−H�y�p�, thus

Ee�
H��p��=H�x�p�−H�y�p�≥H�x�p�−H�y�=
H�e� > 0�

Therefore, there exists p0 ∈ supp e such that 
H��p0� > 0 and we assume w.l.o.g. supp e′ ! p0. Hence
max�d��p0�e��d��p0�e′�� is well defined and finite.
We construct the process by blocks. For a block lasting from stage T +1 up to stage T +M (resp. T +N ), we

construct �x1� � � � �xT �-measurable random variables pT+1� � � � �pT+M such that their distribution conditional to
y1� � � � �yT is close to that of M (resp. N ) i.i.d. random variables of law e (resp. e′). We then take xT+1� � � �xT+M

of law pT+1� � � � �pT+M , and independent of the past of the process conditional to pT+1� � � � �pT+M .
We define the process �xt�t and its law P over �N = N0 +L�M +N� stages, where �M�N� are multiples of

�m�n�, inductively over blocks of stages.
Definition of the blocks. The first block labeled 0 is an initialization phase that lasts from stage 1 to N0. For

1≤ k≤ L, the 2k-th [resp. 2k+1-th] block consists of stages N0+�k− 1��M +N�+1 to N0+�k− 1��M +N�+
M [resp. N0 + �k− 1��M +N�+M + 1 to N0 + k�M +N�].
Initialization block. During the initialization phase, x1�x2� � � � �xN0 are i.i.d. with law p0, inducing a law P0

of the process during this block.
First block. Let S0 be the set of ỹ0 ∈ Y N0 such that P0�·�ỹ0� satisfies an AEP�M�h0�70� 80�. After histories

in S0 and for suitable values of the parameters h0�70� 80, applying Proposition 5.2 to ��� P��= �XN0� P0�·�ỹ0��
allows to define random variables pN0+1� � � � �pN0+M such that their distribution conditional to y1� � � � �yN0 is
close to that of M i.i.d. random variables of law e. We then take xN0+1� � � � �xN0+M of law pN0+1� � � � �pN0+M ,
and independent of the past of the process conditional to pN0+1� � � � �pN0+M . We let xt be i.i.d. with law p0 after
histories not in S0. This defines the law of the process up to the first block.
Second block. Let ỹ1 be a history of signals to the statistician during the initialization block and the first block.

Proposition 5.2 ensures that, given ỹ0 ∈ S0, P1�·�ỹ1� satisfies an AEP�M�h′
0�7

′
0� 8

′
0� with probability no less than

1− <− 281/40 , where we set h′
0 = h0 +
H�e�, 7′

0 = �U�e�/<2��70 + 1/
√
M�+ �4/M�8

1/12
0 , and 8 ′

0 = <+ 3
√
80.
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But an AEP�M�h′
0�7

′
0� 8

′
0� is identical to an AEP�N � �M/N�h′

0� �M/N�7′
0� 8

′
0�. Since M/N = (/�1−(�, for

each ỹ0 ∈ S0, P1�·�ỹ1� satisfies an AEP�N �h1�71� 81� with probability no less that 1 − < − 281/40 , with h1 =
(/�1−(��h0 +
H�e��, 71 = (/�1−(�

[
�U�e�/<2��70 + 1/

√
M�+ �4/M�8

1/12
0

]
, 81 = <+ 3

√
80. Thus the set

S1 of ỹ1 such that P1�·�ỹ1� satisfies an AEP�N �h1�71� 81� has probability no less than 1− 2<− 281/40 − 281/41 .
Inductive construction. We define inductively the laws Pk for the process up to block k and parameters

hk�7k� 8k. We set Nk = M if k odd and Nk = N if k even. Let Sk be the set of histories ỹk for the statistician
up to block k such that Pk�·�ỹk� satisfies an AEP�Nk�hk�7k� 8k�. After ỹk ∈ Sk, define the process during block
k to approximate e i.i.d. if k is odd, and e′ i.i.d. if k is even. After ỹk �∈ Sk, let the process during block k be
i.i.d. with law p0 conditional to the past. Proposition 5.2 ensures that conditional on ỹk ∈ Sk, Pk+1�·�ỹk+1� satisfies
an AEP�Nk+1� hk+1�7k+1� 8k+1� with probability no less than 1−<−281/4k , where hk+1, 7k+1, and 8k+1 are given
by the recursive relations




hk+1 = (

1−(
�hk +
H�e��

7k+1 = (

1−(

(
U�e�

<2

(
7k + 1√

M

)
+ 4

M
8
1/12
k

)

8k+1 = <+ 3
√
8k

if k is even, and 


hk+1 = 1−(

(
�hk +
H�e′��

7k+1 = 1−(

(

(
U�e′�
<2

(
7k + 1√

N

)
+ 4

N
8
1/12
k

)

8k+1 = <+ 3
√
8k

if k is odd.
The definition of the process for the 2L+1 blocks is complete, provided for each k odd,M�hk−H�e�−7k�≥2,

and for each k even, N�hk−H�e′�−7k�≥ 2. We seek now conditions on �<�70� 80�N0�M�N�L� such that these
inequalities are fulfilled. We first establish bounds on the sequences �8k�7k�hk� and introduce some notations

a�<�= 1
<2
max

(
(

1−(
U�e�1

1−(

(
U�e′�

)
(9)

c�<�M�N�=max
(

(

1−(

U�e�

<2
1√
M

+ 8
M

1
1−(

(

U�e′�
<2

1√
N

+ 8
N

)
� (10)

Lemma 6.1. For k= 1� � � � �2L:
(i) 8k ≤ 8max = 11��<�2

−2L + �80�
2−2L

�.
(ii) 7k ≤ 7max = �a�<��2L

[
70 − c�<�M�N�/�1− a�<��

]+ c�<�M�N�/�1− a�<��.
(iii) hk ≥ h0 for k even and hk ≥ h1 for k odd.

Proof. (1) Let B be the unique positive number such that B = 1+ 3
√
B, one can check easily that B < 11

(numerically, B " 10�91). Using that for x� y > 0,
√
x+ y ≤ √

x + √
y and for 0< x < 1, x <

√
x, one verifies

by induction that for k= 1� � � � �2L:
8k ≤ B<2

−k + 3
∑k−1

j=0 2−j

�80�
2−k

and the result follows.
(2) One easily checks numerically that 8max < 22 and 481/12max < 8. From the definition of the sequence �7k�,

for each k:
7k+1 ≤ a�<�7k + c�<�M�N�

the expression of 7max follows.
(3) For k even, hk+2 = hk + �1/(��(
H�e� + �1 − (�
H�e′�� > hk, similarly for k odd and the proof is

completed by induction. �

The starting entropy h0 comes from the initialization block.
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Lemma 6.2. For all h0�70� 80, there exists �N0�h0�70� 80� such that for any �N0�M� that satisfy the conditions

N0 ≥ �N0�h0�70� 80� (11)∣∣∣∣N0

M

H��p0�−h0

∣∣∣∣≤ 70
3

(12)

P��ỹ0� P0�·�ỹ0� satisfies an AEP�M�h0�70� 80���≥ 1− 80�

Proof. Since x1� � � � �xN0 are i.i.d. with law p0, the conditional distributions P0�xi�f �xi�� are also i.i.d. and
for each i= 1� � � � �N0, H�xi�f �xi��=
H��p0�. Let h̄=
H��p0� > 0, 7̄= �h̄/h0��70/3� and for each N0:

CN0
=
{
x1� � � � � xN0�

∣∣∣∣− 1
N0

logP�x1� � � � � xN0 �f �x1�� � � � � f �xN0��− h̄

∣∣∣∣≤ 7̄

}
�

By the law of large numbers there is n0 such that for N0 ≥ n0, P�CN0
�≥ 1− 820 . For each sequence of signals

ỹ0 = �f �x1�� � � � � f �xN0��, define

CN0
�ỹ0�=

{
x1� � � � � xN0�

∣∣∣∣− 1
N0

logP�x1� � � � � xN0 �ỹ0�− h̄

∣∣∣∣≤ 7̄

}

and set
S0 = �ỹ0� P0�CN0

�ỹ0��ỹ0�≥ 1− 80��

Then, P�CN0
� = ∑

ỹ0
P0�ỹ0�P0�CN0

�ỹ0��ỹ0� ≤ P�S0�+ �1− 80��1− P�S0��, and therefore P�S0� ≥ 1− 80, which
means

P��ỹ0� P0�·�ỹ0� satisfies an AEP�N0� h̄� 7̄� 80���≥ 1− 80�

Thus for each ỹ0 ∈ S0, P0�·�ỹ0� satisfies an AEP�M� �N0/M�h̄� �N0/M�7̄� 80�. Choose then �M�N0� such that
condition (12) is fulfilled and from the choice of 7̄, P0�·�ỹ0� satisfies an AEP�M�h0�70� 80�.
We give now sufficient conditions for the construction of the process to be valid.

Lemma 6.3. If the following two conditions are fulfilled:

M�h0 −H�e�−7max�≥ 2 (13)

N�h1 −H�e′�−7max�≥ 2� (14)

then for k= 0� � � � �2L, {
M�hk −H�e�−7k�≥ 2 for k odd

N�hk −H�e′�−7k�≥ 2 for k even.

Proof. Follows from Lemma 6.1. �

Summing up, we get:

Lemma 6.4. Under conditions (11), (12), (13), and (14), the process is well defined.

Note that the process so constructed is indeed a C-process, since at each stage n, the conditional law of xn
given �x1� � � � � xn−1�, belongs either to supp e or to supp e′.

7. Bound on Kullback distance. Let P be the law of the process process �xt� defined above. We estimate
on each block the distance between the sequence of experiments induced by P with e⊗M [resp e′⊗N ]. Then, we
show that these distances can be made small by an adequate choice of the parameters. Finally, we prove the
weak-∗ convergence of the distribution of experiments under P to (�e + �1−(��e′ .

Lemma 7.1. There exists a constant U�e� e′� such that if (11), (12), (13), and (14) are fulfilled, then for
all k odd,

Ed
(
P�ptk+1� � � � �ptk+1 �ỹk−1�

)�e⊗M

≤ M ·U�e� e′� ·
(
7max + 8max + log�M + 1�

M
+L

(
<+ 281/4max

))
�
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and for all k even,

Ed
(
P�ptk+1� � � � �ptk+1 �ỹk−1�

)�e′⊗N

≤ N ·U�e� e′� ·
(
7max + 8max + log�N + 1�

N
+L

(
<+ 281/4max

))
�

where for each k, tk denotes the last stage of the �k− 1�th block.

Proof. Assume k odd, the even case being similar. For ỹk−1 ∈ Sk−1, Proposition 5.2 shows that

d
(
P�ptk+1� � � � �ptk+1 �ỹk−1��e⊗M

)
≤ 2M

(
7max + 8max log��supp e��

)+ �supp e� log�M + 1�+ 2�

For ỹk−1 �∈ Sk−1,
d�P�ptk+1� � � � �ptk+1 �ỹk−1��e⊗M�=Md��p0�e��

The result follows, using P
(⋂2L

1 Sk
)≥ 1− 2L�<+ 281/4max� and with U�e� e′�=max

{
2�2d��p0�e��2d��p0�e′��

2�supp e��2�supp e′�}.
Lemma 7.2. For any L and any C > 0, there exists �<�<0�70�, and � �M� �N� such that for all �M�N� >

� �M� �N�, conditions (13) and (14) are fulfilled and for all N0 such that (11) and (12) hold, for all k odd,

Ed
(
P�ptk+1� � � � �ptk+1 �ỹk−1�

)�e⊗M ≤MC

and for all k even,
Ed

(
P�ptk+1� � � � �ptk+1 �ỹk−1�

)�e′⊗N ≤NC�

Proof. We show how to choose the parameters to achieve the above result.
(i) Choose < and 80 such that 8max and L< are small.
(ii) Choose 70 and �M7�N7� such that �log�M + 1��/M , �log�N + 1��/N , and 7max are small for all

�M�N�≥ �M7�N7�.
(iii) Choose N0 ≥N0�h0�70� 80�.
(iv) Choose � �M� �N�≥ �M7�N7� such that (13) and (14) are satisfied for �M�N�≥ � �M� �N�.
(v) Choose �M�N�≥ � �M� �N� such that (12) holds.

Applying Lemma 7.1 then yields the result. �

Lemma 7.3. For any C > 0, there exists �<� 80�70�M�N�N0�L� that fulfill (11), (12), (13), and (14) and
such that

(i) for k odd, Ed�P�ptk+1� � � � �ptk+1 �ỹk−1���e⊗M ≤MC

(ii) for k even, Ed�P�ptk+1� � � � �ptk+1 �ỹk−1���e′⊗N ≤NC

(iii) N0/ �N ≤ C.

Proof. It is enough to use the previous lemma, where L is chosen a large constant times 1/C. Then, remark
that for �M�N� large enough, (12) is fulfilled for N0 of an order constant times M , hence of the order constant
times �N/L. �

7.1. Weak-∗ convergence. Lemma 7.3 provides a choice of parameters for each C > 0, hence a family of
processes PC and a corresponding family ��C�C of elements of D�.

Lemma 7.4. �C weak-∗ converges to (�e + �1−(��e′ as C goes to 0.

Proof. With �′ =�N0/ �N��p0 +�1−�N0/ �N���(�e+�1−(��e′�, since N0/ �N ≤C, �′ converges weakly to (�e+
�1−(��e′ as C goes to 0. Let g � E→� continuous, we prove that �E�′g−E�C

g� converges to 0 as C goes to 0.

�E�′g−E�C
g� ≤ 1

�N −N0

∑
k odd

tk+1∑
t=tk+1

E�g�et�− g�e��

+ 1
�N −N0

∑
k even

tk+1∑
t=tk+1

E�g�et�− g�e′���
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By uniform continuity of g, for every <̄ > 0, there exists =̄ > 0 such that

�e1 − e2�1 ≤ =̄ =⇒ �g�e1�− g�e2�� ≤ <̄�

We let ek = e for k odd and ek = e′ for k even and �g� =maxe′′ �g�e′′��. For t in the k-th block

E�g�et�− g�ek�� ≤ <̄+ 2�g�
=̄

E�et − ek�1

≤ <̄+ 2�g�
=̄

√
2 ln 2 ·Ed�et�ek��

since �p−q�1 ≤√
2 ln 2 ·d�p�q� (Cover and Thomas [7, Lemma 12.6.1, p. 300]) and from Jensen’s inequality.

Applying Jensen’s inequality again:

1
Nk

tk+1∑
t=tk+1

E�g�et�− g�ek�� ≤ <̄+ 2�g�
=̄

√
2 ln 2
Nk

tk+1∑
t=tk+1

Ed�et�ek��

Now,

tk+1∑
t=tk+1

Ed�et�ek� =
tk+1∑

t=tk+1
Ed

(
P�pt�ỹk−1� ytk+1� � � � � yt−1��ek

)

≤
tk+1∑

t=tk+1
Ed

(
P�pt�ỹk−1�ptk+1� � � � �pt−1��ek

)
= Eỹk−1d

(
P�ptk+1� � � � �ptk+1 �ỹk−1��e⊗Nk

k

)
≤ NkC�

where the first inequality comes from the convexity of the Kullback distance. Reporting in the previous and
averaging over blocks yields

�E�′g−E�C
g� ≤ <̄+ 2�g�

=̄

√
2 ln 2 ·C�

Thus �E�′g−E�C
g� goes to 0 as C goes to 0. �

References

[1] Abreu, D., D. Pearce, E. Stacchetti. 1990. Toward a theory of discounted repeated games with imperfect monitoring. Econometrica
58 1041–1063.

[2] Bavly, G., A. Neyman. 2003. Online concealed correlation by boundedly rational players. Discussion Paper Series 336, Center for
Rationality and Interactive Decision Theory, Hebrew University, Jerusalem, Israel.

[3] Ben Porath, E. 1993. Repeated games with finite automata. J. Econom. Theory 59 17–32.
[4] Blackwell, D. 1951. Comparison of experiments. Proc. Second Berkeley Sympos. Math. Statist. Probability, University of California

Press, Berkeley, CA, 93–102.
[5] Blackwell, D. 1953. Equivalent comparison of experiments. Ann. Math. Statist. 24 265–272.
[6] Compte, O. 1998. Communication in repeated games with imperfect private monitoring. Econometrica 66 597–626.
[7] Cover, T. M., J. A. Thomas. 1991. Elements of Information Theory. Wiley Series in Telecomunications. John Wiley and Sons, New York.
[8] Fudenberg, D., D. K. Levine, E. Maskin. 1994. The folk theorem with imperfect public information. Econometrica 62 997–1039.
[9] Goldberg, Y. 2003. On the minmax of repeated games with imperfect monitoring: A computational example. Discussion Paper Series

345, Center for the Study of Rationality, Hebrew University, Jerusalem, Israel.
[10] Gossner, O. 1998. Repeated games played by cryptographically sophisticated players. Working Paper DP 9835, CORE, Louvain-la-

neuve, Belgium.
[11] Gossner, O. 2000. Sharing a long secret in a few public words. Working Paper DP 2000-15, THEMA, Paris, France.
[12] Gossner, O., P. Hernández. 2003. On the complexity of coordination. Math. Oper. Res. 28 127–141.
[13] Gossner, O., R. Laraki, T. Tomala. 2004. Maxmin computation and optimal correlation in repeated games with imperfect monitoring.

Working Paper DP-2004-63, Cahiers du Ceremade, Université Paris Dauphine, Paris, France. Math. Programming.
[14] Gossner, O., T. Tomala. 2006. Secret correlation in repeated games with signals. Math. Oper. Res. Forthcoming.
[15] Gossner, O., N. Vieille. 2001. Repeated communication through the ‘and’ mechanism. Internat. J. Game Theory 30 41–61.
[16] Gossner, O., N. Vieille. 2002. How to play with a biased coin? Games Econom. Behavior 41 206–226.
[17] Kandori, M., H. Matsushima. 1998. Private observation, communication and collusion. Rev. Econom. Stud. 66 627–652.
[18] Lacôte, G., G. Thurin. 2003. How to efficiently defeat strategies of bounded complexity. Mimeographed.
[19] Lehrer, E. 1988. Repeated games with stationary bounded recall strategies. J. Econom. Theory 46 130–144.
[20] Lehrer, E. 1991. Internal correlation in repeated games. Internat. J. Game Theory 19 431–456.



Gossner and Tomala: Empirical Distributions of Beliefs Under Imperfect Observation
30 Mathematics of Operations Research 31(1), pp. 13–30, © 2006 INFORMS

[21] Lehrer, E. 1994. Finitely many players with bounded recall in infinitely repeated games. Games Econom. Behavior 7 390–405.
[22] Neyman, A. 1997. Cooperation, repetition, and automata. S. Hart, A. Mas-Colell, eds. Cooperation: Game-Theoretic Approaches.

NATO ASI Series F, Vol. 155. Springer-Verlag, Berlin, Germany, Berlin, Germany, 233–255.
[23] Neyman, A. 1998. Finitely repeated games with finite automata. Math. Oper. Res. 23 513–552.
[24] Parthasaraty, K. R. 1967. Probability Measures on Metric Spaces. Academic Press, New York.
[25] Piccione, M., A. Rubinstein. 2003. Modeling the economic interaction of agents with diverse abilities to recognize equilibrium

patterns. J. Eur. Econom. Association 1 212–223.
[26] Renault, J., T. Tomala. 1998. Repeated proximity games. Internat. J. Game Theory 27 539–559.
[27] Renault, J., T. Tomala. 2004. Communication equilibrium payoffs of repeated games with imperfect monitoring. Games Econom.

Behavior 49 313–344.
[28] Rockafellar, R. T. 1970. Convex Analysis. Princeton University Press, Princeton, NJ.


	Introduction.
	Definitions and main results.
	Notations.
	Definitions.
	Processes and distributions.
	Measures of uncertainty.

	Main results.
	Trivial observation.
	Perfect observation.
	Example of a nonachievable experiment distribution.

	Reduction of the problem.
	The condition $\E_{\delta} \Delta H \geq 0$ is necessary.
	$C$-perfect observation.
	The condition $\E_{\delta} \Delta H \geq 0$ is sufficient.

	Presentation of the proof of Proposition 3.1.
	The one block construction.
	Kullback and absolute Kullback distance.
	Equipartition properties.
	Types.
	Distributions induced by experiments and by codifications.
	$\EP$ to $\AEP$ codification result.
	$\AEP$ to $\AEP$ codification result.

	Construction of the process.
	Bound on Kullback distance.
	Weak-$*$ convergence.


